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Abstract

The human brain uses visual attention to facilitate object
recognition. Traditional theories and models envision this
attentional mechanism either in a pure feedforward fashion
for selection of regions of interest or in a top-down task-
priming fashion. To these well-known attentional mecha-
nisms, we add here an additional novel one. The approach
is inspired by studies of biological vision pertaining to the
asynchronous timing of feedforward signals among differ-
ent early visual areas and the role of recurrent connections
from short latency areas to facilitate object recognition [7].
It is suggested that recurrence elicited from these short la-
tency dorsal areas improves the slower feedforward pro-
cessing in the early ventral areas. We therefore propose
a computational model that simulates this process. To test
this model, we add such fast recurrent processes to a well-
known model of feedforward saliency, AIM [6] and show
that those recurrent signals can modulate the output of AIM
to improve its utility in recognition by later stages. We fur-
ther add the proposed model to a back-propagation neural
network for the task of scene recognition. Experimental re-
sults on standard video sequences show that the discrim-
inating power of the modulated representation is signifi-
cantly improved, and the implementation consistently out-
performs existing work including a benchmark system that
does not include recurrent refinement.

1. Introduction
Object recognition in real scenes is a hard problem. Clas-

sical computer vision algorithms rely on scanning the image
to search for similar patterns that correspond to targets, a
problem proved to be NP-complete [30]. In one way or an-
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other, attentive mechanisms facilitate object recognition in
both biological and machine vision.

A number of computational approaches follow [22] to
model visual attention in a pure bottom-up fashion. The
premises of these models are a layered hierarchy that relies
on a cascade of filters. The process begins by extracting im-
age characteristics of the object (e.g. colour, edges, motion)
into a multi-dimensional description, and gradually build-
ing up to a saliency representation. The representation is
used to provide regions of interest with respect to the back-
ground that further facilitates object recognition. However,
when input scenes are cluttered and noisy, implementations
(e.g. [34,35]) that follow the above feedforward strategy fail
even for the simplest target types. The main reason for this
failure is that, saliency in these models is defined in a way
to capture the perceptual difference between a location and
its background. If such an algorithm is exposed to a clut-
tered scene, where the difference between a location and its
background is not obvious or objects are not conspicuous
in the manner defined by the algorithm, then the saliency
representation will confuse a potential target with its back-
ground, such that it is difficult for the algorithm to yield the
region that precisely segments the target.

Other approaches instead suggest the importance of us-
ing recurrence to model visual attention. Since an early con-
ceptualization [24], the idea has been applied in many com-
putational models (e.g. [14, 31]). They incorporate a slow
and serial process starting from the top of the visual hierar-
chy, in which top-down information controls the bottom-up
activation flow. In the case of object recognition, the nature
of recurrence captured in different models (e.g. [2,32]) is to
refine the feedforward representation to assist recognition.

Recent studies of the primate visual system provide the
insight that another kind of recurrence among the early ar-
eas of the primate visual cortices could also play an im-
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Table 1: Response Latencies of visual areas. Earliest and median
latencies are recorded from monkeys in different studies. Earliest
latencies refer to the delays observed with 10% neural activations.

Area Earliest (msec) Median (msec)
V1 M [23] 20-31 40
MT [27] * 25 45
MST [21] 35 45
FEF [9] 35-45 65
7a [9] 50 90
V1 P [25] 40 65
V2 P [25] 55 85

* Latency recorded uses TMS on human subjects.

portant role in attention that facilitates object recognition
(see [3] for a review). This mechanism is highly dependent
on timing of signal convergence in the visual hierarchy.

Bullier proposed a model that uses asynchronous infor-
mation projections to facilitate early visual analysis [7]. The
so-called integration model of visual processing is put for-
ward based on the observations that the primate geniculo-
cortical and cortico-cortical connections have different con-
duction speeds. He and his colleagues collected data pro-
vided by several research groups and noticed that the con-
duction speed of M pathway (magnocellular cells of lateral
geniculate nucleus (LGN)) to dorsal areas (for motion per-
ception, for example) is faster than the conduction speed
of P pathway (parvocellular cells of LGN) to ventral ar-
eas (for object perception) [8, 25]. Higher level dorsal ar-
eas such as MT, MST and FEF, are activated more rapidly
than several early ventral areas, such as V1 P and V2 P (see
Table 1 for a list of feedforward latencies recorded at sev-
eral visual areas). They also noted that the difference in
feedforward latencies (about 20ms between MT and V1 P)
permits the results of computation in higher dorsal areas to
be sent back through recurrent connections to ventral neu-
rons in time to affect the feedforward projection from the
P pathway to the same group of ventral neurons. Since the
computational units of the two pathways interpret different
visual elements, the fast recurrent connections may natu-
rally reinforce the ventral bottom-up object analysis. Exper-
iments [17,18] showed that the recurrence elicited from MT
facilitates computation of ventral V1 cells in a push-pull
fashion, which improves neural responses towards moving
objects and suppresses background activations. However,
what Bullier and his colleagues did not do is detail exactly
how such a process might operate.

Motivated by the integration model, we describe in sec-
tion 2 the computational components that capture the idea
that the primate visual system uses results from the higher
dorsal areas to modulate the computation in the early ven-
tral areas. In section 3, the model is formalized and imple-
mented. Several examples using static as well as dynamic
images are shown to demonstrate the modulation effects.

Figure 1: Connections between dorsal and ventral pathways.
Hierarchy of visual areas considered in this paper. (derived
from [2,7]) Grey blocks denote dorsal areas, and white blocks de-
note ventral areas. Lines denote connections. Particularly, double
arrow lines denote feedback connections from higher dorsal areas
to lower ventral areas that envisioned in our model.

To test the model comparatively, we added the implemen-
tation to a back-propagation neural network for the task of
scene recognition, which is presented in section 4. Results
on standard video sequences of real scenes indicate that the
recurrent modulation significantly augments the represen-
tation used for recognition, and the implementation con-
sistently outperforms existing work including a benchmark
system that does not include recurrent refinement. In sec-
tion 5, we draw conclusions as well as discuss the implica-
tions of the proposed model.

2. Computational Model of Fast Recurrent
Modulation

The representation and processes described in this sec-
tion are informed by the knowledge of structures and func-
tion of the primate visual system [11, 33]. In particular, the
model details the mechanism of the fast recurrent modula-
tion [7] between neurons of higher dorsal areas and neurons
of lower ventral areas.

The model assumes a multi-pathway layered hierarchy,
with each layer being a retinotopic array. Layers are con-
nected via feedforward connections; some layers have in
addition, recurrent links to layers earlier in the hierarchy
within the same or different pathways. Figure 1 illustrates
these concepts. An element of the array is a neural assem-
bly that includes all the units that perform the associated
computations. For the rest of the paper, we use connections
from MT to V1 P as an example to develop the idea.
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In its most direct form, the novel aspects of our model
consist of using the output of MT neurons to modulate or
tune the processing of V1 P neurons in advance of the ar-
rival of their input. The tuning is realized as a multiplicative
inhibition on the inputs of the V1 P computations. The con-
cept may be generalized to be as applicable to any other
dorsal area that is connected via recurrence to a ventral area
provided the timing of M and P pathway conduction is of
the correct kind. Specifically, if the sum of the time re-
quired for input to arrive at a dorsal area, to be processed
by that area, and to be fed back to a ventral area is less than
the time required for a P pathway input to reach that ventral
area, then this same mechanism may be at play.

The neurons of the two pathways compute different vi-
sual features. In macaque monkeys, it is reported that M
cells are achromatic, have a higher peak sensitivity to con-
trast and respond to higher temporal frequencies than P
cells, while P cells are color-sensitive, respond to higher
spatial frequencies and show higher sensitivity at the low-
est temporal frequencies. There is significant overlap in
the ranges of both temporal and spatial frequency sensi-
tivity [10]. MT neurons also have larger receptive fields
(RFs) than V1 P neurons, and thus integrate input over a
wider spatial context. If results from a wider context can
be taken to influence the smaller V1 computations, they can
act as a consistency check on those computations that in-
forms the V1 computations of how to best respond given a
wider spatial context that they, because of connectivity lim-
itations, cannot otherwise see. The fast feedforward sweep
of dorsal activations from the M channel thus underlines
a mechanism of the primate visual system to provide spa-
tiotemporal contextual guidance to the ventral analysis. In
our model, context modulates the V1 ventral computations
through multiplicative inhibition. The fact that these visual
areas are all retinotopically organized allows such modula-
tion to locally specific, in contrast to a global context mea-
sure (see [4, 12, 15]).

3. Formalization

The units that are essential to describe the process are
formalized in the next section. Empirical comparisons are
conducted to study the modulation effects as follows.

3.1. Formalization of each stage

The model will include M and P channel pathways from
the retina (simplified to just represent an image with no
other processing), LGN and cortical areas V1 and MT. Sets
of image filters will be defined that represent the function
of each. The structure of each filter lends itself naturally to-
wards a filter bank that provides even coverage of the spec-
trum. Layers of filter banks are connected to form a cascade
structure to extract early visual features as follows.

LGN: The center-surround receptive fields of LGN have
response patterns that can be described as a Difference-of-
Gaussian filter [20] given by:

flgnS(x, y) =
1

2πσ2
c

exp {−(x2 + y2)

2σ2
c

}

− 1

2πσ2
s

exp {−(x2 + y2)

2σ2
s

}
(1)

where σc and σs are the bandwidth (standard deviation) for
the center and surround Gaussian function respectively. In
our implementation, these parameters are set to realize M
cells (σc = 3, σs = 4.8) and P cells (σc = 1, σs = 1.6).
LGN temporal response patterns can be described as a log-
Gabor filter [13], which is defined in frequency domain as:

FlgnT (w) = exp {− log(w/w0)
2

2 log(σt/w0)2
} (2)

where w0 is the center temporal frequency, and σt is the
bandwidth. A multi-scaled temporal filter bank is real-
ized to provide an even spectrum coverage by using dif-
ferent w0 and σt. We configure lower temporal frequencies
(w0 = 3, 9, 27) for P cells and higher temporal frequen-
cies (w0 = 9, 27, 81) to represent M cells. The bandwidth
σt = 0.55w0, which yields approximately 2 octaves. Note
that all the units in the model are spatiotemporal and most
conveniently described in the frequency domain.

V1: The simple cells [16] receive feedforward projec-
tions from LGN and respond to different spatiotemporal
sub-bands. The temporal profile of V1 is defined as a low-
pass filter to describe the temporal selectivity. The spatial
sub-band selectivity can be described as a 2D log-Gabor
orientation filter that is defined in frequency domain as:

FV 1S(u, v) = exp {−log(u1/u0)
2

2log(σu/u0)2
} · exp {−v21

2σ2
v

} (3)

where u1 = u cos(θ)+v sin(θ), v1 = −u sin(θ)+v cos(θ),
θ denotes the orientation of the filter, u0 denotes the center
spatial frequency, σu and σv denote the spatial bandwidth
(standard deviation) of the simple cell along the u and v axis
respectively. We implement a filter bank of 4 spatiotempoal
subbands. For each, V1 P simple cells are tuned to high spa-
tial frequencies (u0 = 9, 27, 81) and V1 M simple cells are
set with lower spatial frequencies (u0 = 3, 9, 27), note that
the ranges for M and P cells have overlaps. The bandwidths
are set as σu = 0.55u0, σv = 0.55u0.

V1 complex cells [16] integrate energy of V1 simple
cells over larger receptive fields. In this context, a quadra-
ture pair is used to model the complex cell, which computes
the square root over outputs of two simple cells given by
Eq.(3) that are 90 degrees out of phase. In practice, the
Hilbert transform of a V1 simple cell response gives its
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quadrature pair. We follow [1] to compute V1 energy of
a specific spatiotemporal orientation, which is governed by:

Cθ(x, y, t) =
√

(Sθ(x, y, t))2 + (h(Sθ(x, y, t)))2; (4)

where Sθ(x, y, t) denotes the responses of V1 simple cells
in spatiotemporal domain of orientation θ, and h(·) denotes
the computation of quadrature pair.

MT: In particular for the dorsal pathway, the computa-
tion of a MT neuron takes a simple form that integrates over
V1 M complex cell responses within a larger spatiotemporal
area to compute opponent energy [5] given by:

MTθ(x, y, t) =
∑

∆x,∆y,∆t

Cθ(x, y, t)

−
∑

∆x,∆y,∆t

Cθ+π(x, y, t)
(5)

where
∑

denotes the summation of V1 complex cells over
a spatialtemporal range (∆x,∆y,∆t).

Multiplicative inhibition: The output representation of
MT used to modulate V1 ventral area is generated by ac-
cumulated responses across all spatiotemporal bands. The
modulation is realized as multiplicative inhibition. Since it
is unclear where the MT-V1 feedback fibers terminate, we
have considered three possible locations, namely, at input to
the V1 ventral simple cells, at input to the V1 ventral com-
plex cells, and at output from the V1 ventral complex cells.
Out tests show similar results. Therefore, in the current pa-
per we assume such feedback connections affect the input
to the V1 ventral simple cells. The process is given by:

P ′(x, y, t) = P (x, y, t) ∗ Sig(
∑
θ

MTθ(x, y, t)) (6)

where P denotes the output of LGN P cells, and P ′ is the
modulated output that further connects to V1 ventral simple
cells. Sig(·) denotes the sigmoid function. The motivation
for the use of this operation is to bound the MT output in a
nonlinear way.

3.2. Empirical study

We begin with a simple example that illustrates the se-
quence of computations. Fig. 2 shows an example of two
simulated objects with plaid patterns in front of uniformly
distributed pseudorandom noisy background. The intention
of using a simulated scene is to provide a clear view of the
computation developed along the hierarchy. In this case,
both pathways compute pure spatial features. As shown,
layers along the dorsal pathway have lower spatial fre-
quency sensitivity with four orientations, and layers of the
ventral pathway have higher spatial frequency sensitivity 1.

1In this demo, we use u0 = 3 for V1 M cells and u0 = 27 for V1 P
cells respectively in Eq.(3).

Results of MT layer are the feedback representation that is
used to modulate the input of V1 ventral neurons. Since
ventral neurons have higher spatial sensitivity, they extract
mostly the noisy patterns present in both targets and back-
ground (see the non-modulated V1 ventral output where one
cannot tell the location of targets). Through modulation, re-
gions of background are inhibited, leaving patterns belong-
ing to the targets highlighted in the output.

Next, in order to enable a qualitative analysis of the im-
pact of the model, we consider the effect of incorporating it
into a model of saliency and into a model of scene recog-
nition. The fast recurrent process fits easily in the existing
saliency models. The dorsal-ventral inhibition introduced
in the previous section makes an impact on computation of
visual saliency especially in cluttered and noisy scenes. To
test this idea, we add the proposed recurrent model into a
well-known saliency model, AIM [6], to compute a saliency
representation over a variety of image types to demonstrate
the potential for segmentation improvement.

Since filters representing the dorsal pathway respond to
both spatial and temporal information represented in the in-
put, we conduct single image tests to evaluate modulation
caused by spatial frequency variations, and use image se-
quences to study the motion caused modulation.

The inhibitory effect elicited from the dorsal pathway
to modulate the computation of the ventral pathway is re-
vealed using static scene images (Note: filters used in this
experiment are purely spatial.). Fig. 3 demonstrates a qual-
itative comparison of the saliency representation computed
by AIM using the proposed mechanism with the saliency
representation computed by AIM alone. As can be ob-
served, there is considerable similarity between the out-
lines of salient regions (reddish areas) from the modulated
saliency map and real object contours shown in the origi-
nal images. Finally, a substantial amount of clutter is sup-
pressed.

We also provide examples using image sequences in
Fig. 4 to illustrate how motion is involved in inhibiting
ventral perception that facilitates object segregation. The
dorsal feedback maps in these examples clearly highlight
the regions consisting moving objects (e.g. cars, pedestri-
ans). This information inhibits the ventral computation cor-
responding to stationary areas, such as trees, buildings and
street signs. In return, moving targets are conspicuous in
the saliency representation. By comparing the modulated
ventral saliency maps and the non-modulated versions to
human labeled data, it is obvious that salient regions de-
picted in the modulated ventral saliency maps more accu-
rately reflect the boundaries of targets, facilitating figure-
ground segmentation.

4



Figure 2: An example to demonstrate the principles of the proposed computational model. Stimuli: two objects of plaid pattern within
uniformly distributed pseudorandom noisy background. Both pathways compute pure spatial features. The dorsal pathway computes the
lower frequency orientation features to generate a feedback representation. Higher frequency orientation features computed along the
ventral pathway are then modulated through multiplication. Result of the modulated V1 P orientation output shows a clear segmentation
that isolates the two objects.

4. Improved scene recognition via fast recur-
rent modulation

In view of the enhanced figure-ground segmentation, we
suspect that the fast recurrent modulation may deliver an
improved representation for recognition. To test this idea,
our implementation is added to a back-propagation neural
network (as a scene classifier) to form a recognition sys-
tem to recognize real scenes. Image sequences introduced
in [29] are used for our testing because they include a va-
riety of cluttered scenes. Since scenes are recorded using a
hand-held camera, we want to examine how spatiotemporal
information extracted by the dorsal representation may im-
pact overall scene recognition performance. We compared
our system with two existing systems that incorporate dif-
ferent feedforward strategies on the same set of video se-
quences.

We first detail the proposed recognition system, and then
describe the other two existing systems.

In the proposed system that uses fast recurrent modula-
tion (FRM), the filter cascade to simulate the dorsal path-
way includes 3 temporal scales (w0 = 9, 27, 81 used for
Eq.(2)), 3 spatial scales (u0 = 3, 9, 27 for Eq.(3)) and 4

orientations on the luminance channel. As such, there are
3 ∗ 3 ∗ 4 = 36 filters providing the dorsal representation. To
simplify the computation, the filter cascade for the ventral
pathway does not include temporal filters, but with 3 spa-
tial frequency sub-bands and 4 orientations on luminance
channel. Compared with the spatial filters that are used to
construct the dorsal representations, the ventral filters are
defined in a way that covers relatively higher spatial fre-
quency sub-bands (u0 = 9, 27, 81 for Eq.(3)). The early
ventral representation also includes two color opponency
features. Thus there are 3 ∗ 4+2 = 14 filters that define the
ventral representation. Finally, each extracted visual feature
in the ventral representation is modulated using Eq.(6).

We employ a simple machine vision strategy for recogni-
tion. A holistic representation is built following [29]. Each
modulated ventral feature is sliced into five-by-five non-
overlapping blocks. A vector is created for each ventral
feature through block averaging. Thus, each vector has 25
elements. At last, vectors of the 14 ventral features are con-
catenated to form the holistic representation, which is then
used for recognition.

The other two existing systems use the same filters to
compute visual features, but they employ different strate-
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Figure 3: An empirical single-image comparison of the ventral saliency based on the proposed fast recurrent modulation with non-
modulated ventral saliency for a variety of cluttered scenes. From left to right: original images, feedback strength elicited from the fast
dorsal activation, visual saliency based on modulated ventral features and visual saliency based on non-modulated ventral features.

gies to construct the holistic representation. The first one
(SI) borrows the feedforward strategy provided by Siagian
and Itti [29]. The holistic representation is built based on
the non-modulated ventral features. We also defined a sec-
ond feedforward strategy referred to as the benchmark sys-
tem (BM), which builds the holistic representation by the
concatenation of dorsal features and non-modulated ventral
features. The reason for using the BM is that it provides an-
other way to handle the scene features by directly adding the
results of dorsal computation in the recognition representa-
tion. That said, the recognition network of BM has direct
access to all information carried in both ventral and dorsal
pathways. Thus, FRM and SI both include 14 features in
the holistic representation, while BM has 50 features. The
length of the vector in the holistic representation for FRM
and SI is 25 ∗ 14 = 350, and it is 50 ∗ 25 = 1250 for BM.

Test sequences include 3 scenarios of a university cam-
pus location, “ACB”, “AnFpark” and “FDFpark” (see

Figure 5: Test sequences. (introduced in [29]) From left to right:
ACB, AnFpark and FDFPark.

Fig.5). Each scenario includes 9 different scenes, with each
scene under varied illuminating conditions. In our experi-
ment, six clips of each scene are used to train the network,
with another four clips (that are different from the training
set) to test the performance.

We apply the same one-hidden-layer back-propagation
neural network (provided by the Neural Network Toolbox in
Matlab) in all systems. To further simplify the computation
and allow all the learning networks to have the same number
of input nodes, we reduce the vector dimension of the holis-
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Figure 4: An empirical study of the effects by the proposed fast recurrent modulation on image sequences. Visual saliencies based on
the modulated ventral features are compared with non-modulated ventral saliency for image sequences. Also provided is the hand crafted
ground truth labeling. From left to right: original image sequences, feedback strength elicited from the fast dorsal activation, visual
saliency based on modulated ventral features, visual saliency based on non-modulated ventral features, and ground truth masks.

Table 2: Comparison of recognition performance. The percent-
age indicates the correctness rate, which is computed as number of
correctly recognized scenes divided by number of total test scenes,
as per scenario. The proposed method (FRM) consistently outper-
forms Siagian and Itti’s method (SI) and the benchmark method
(BM). Performance gain of BM over SI is also seen.

Scene SI FRM BM
ACB 90.43% 93.84% 91.25%
AnFpark 90.62% 91.45% 91.22%
FDFpark 90.26% 93.16% 92.41%

tic representation to 80 using principal component analysis
available in [19]. Therefore, the input layer of the network
includes 80 nodes. The output layer contains 9 nodes, with
each corresponding to a scene within a scenario. The neu-
ral network contains one hidden layer of 100 nodes. For
fair comparisons and to exclude the performance gain in-
troduced outside the proposed fast recurrent modulation, all
tests use the same set of network parameters. The cut-off of
convergence that we use for all cases is set to 2%.

Table 2 provides a quantitative comparison of perfor-
mance achieved by the three systems to correctly recognize
a scene, as per scenario. Performance is measured by recog-
nition correctness, the ratio between the number of true pos-
itives and the number of all test samples. We see from the
table that FRM outperforms the other two systems for all
scenarios. Therefore, the empirical conclusion drawn in the
previous section that the fast recurrent modulation is able
to provide a better figure-ground segmentation to facilitate
object recognition is confirmed in this quantitative study.

5. Discussion

In this paper, we have proposed a computational model
to describe the attentive mechanism of the fast recurrent
modulation. In particular, we detailed the process by which
results of computation from higher dorsal areas are used to
inhibit the computation of lower ventral areas. The main
role of the modulation is to improve object segmentation
and further to facilitate high level visual tasks.

At first blush, it may seem that this work is simply a
re-incarnation of the well-known Gist model of [28], or
the Spatial Envelope of [26]. This however, is not the
case. Oliva and colleagues focus on methods to improve
the recognition of whole scenes, and to be sure, we do use
this task as an example. Their Gist approach is motivated
by the “proposition that top-down information from visual
context modulates the saliency of image regions during the
task of object detection”. The visual context referred to is
“based on a model of contextual priors (that learns the re-
lationship between context features and the location of the
target during past experience)”. They integrate these priors
with a simple model of image saliency. We too modulate
the saliency of image regions but with local image char-
acteristics computed independently and differently than the
local image characteristics that go into saliency computa-
tion. Their Spatial Envelope approach employs a set of
perceptual dimensions (naturalness, openness, roughness,
etc.) that represent the dominant spatial structure of a scene.
They show that these dimensions may be reliably estimated
using spectral and coarsely localized information. In gen-
eral, theirs is a “whole scene” approach in both cases. On
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the other hand, ours is a local, image-based, approach that
takes advantage of different features that are computed with
different speeds in the visual system and thus can positively
affect each other via fast recurrence.

We conducted empirical studies on both single images
and image sequences to demonstrate the inhibitory effects
of the modulation. The specific examples show the impact
of this recurrent inhibition on the computation of a saliency
map and for the task of scene recognition. In both bases,
noticeable improvements are observed. Our direct analysis
has focused only on MT-V1 recurrence, and as noted earlier,
possibilities for recurrent contextual modulation may exist
at other levels of the visual processing hierarchy. It will be
a challenge to determine what semantic information is com-
puted by each layer and how it may productively modulate
lower layers in order to facilitate ventral visual processes.
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