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Yarbus' pioneering work in eye tracking has been influential to methodology and in demonstrating the
apparent importance of task in eliciting different fixation patterns. There has been renewed interest in
Yarbus' assertions on the importance of task in recent years, driven in part by a greater capability to apply
quantitative methods to fixation data analysis. A number of recent research efforts have examined the

work has raised a number of interesting questions, with some investigations calling for closer exam-
ination of the validity of Yarbus' claims, and subsequent efforts revealing some of the nuances involved in
carrying out this type of analysis including both methodological, and data related considerations. In this
paper, we present an overview of prior efforts in task prediction, and assess different types of statistics
drawn from fixation data, or images in their ability to predict task from gaze. We also examine the extent
to which relatively general task definitions (free-viewing, object-search, saliency-viewing, explicit sal-
iency) may be predicted by spatial positioning of fixations, features co-located with fixation points,
fixation dynamics and scene structure. This is accomplished in considering the data of Koehler et al.
(2014) [30] affording a larger scale, and qualitatively different corpus of data for task prediction relative
to existing efforts. Based on this analysis, we demonstrate that both spatial position, as well as local
features are of value in distinguishing general task categories. The methods proposed provide a general
framework for highlighting features that distinguish behavioural differences observed across visual tasks,
and we relate new task prediction results in this paper to the body of prior work in this domain. Finally,
we also comment on the value of task prediction and classification models in general in understanding
facets of gaze behaviour.

& 2016 Published by Elsevier B.V.
1. Introduction

Early seminal work in analyzing eye movement patterns by
Buswell [9] and Yarbus [58] remains influential in shaping scien-
tific discourse addressing the role of task in gaze behaviour. This
includes the notion that an observer's task may be inferred from
examining their eye movements.

There is a rich literature on research efforts targeted at pre-
dicting human gaze patterns, in most instances in the absence of a
specific task Bruce et al. [7], Shen and Zhao [41], Han et al. [24],
Loyola et al. [35], Borji et al. [3], Kümmerer et al. [31], Wilming
et al. [55].
omputer Science, University

G. Boisvert),

.D.B. Bruce, Predicting task
puting (2016), http://dx.doi
Contemporary research efforts have further examined the
interaction between task and fixations, in some cases directly
considering Yarbus' claims about the predictability of task from
fixations [10,48]. Some of this analysis has leveraged modern
techniques in pattern classification to directly predict task from
recorded fixation data. One prior effort modelled heavily on the
methodology of Yarbus' experiments, [19], considers three differ-
ent classifiers applied to aggregate eye-movement statistics for
task prediction. None of these classifiers yielded performance
above chance in considering the aggregate fixation features. More
recent work considering the same data, but instead using low-
resolution fixation density patterns [1], or other statistics achieved
above chance performance by revising the feature set and infer-
ence methods used. Further improvements for the same data set
have also been achieved in assuming knowledge of the participant
viewing the image, or the specific image under consideration [29].
Accounting for covert attention in models of this variety has also
lead to higher prediction accuracies [22]. The data provided by
from eye movements: On the importance of spatial distribution,
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Greene et al. [19] has also inspired analysis of the possible impact
of tasks requiring both visual processing and language processing
[13]. There are evidently important individual differences that
factor into viewing patterns [44], and such results also point to the
notion that features such as fixation position and duration carry
significant information about a viewers task.

In the context of attention modeling, there are many studies
that address the relative contribution of bottom-up vs. top-down
influences on the deployment of overt attention and fixation
patterns. In the context of this paper, bottom-up refers to exo-
genous attention that is driven by properties of the visual stimu-
lus, and independent of task or semantics. In referring to top-
down processes, we refer to endogenous aspects of attention and
guidance of gaze that are under executive control and may involve
the influence of task directives, and working memory.

The spirit of Yarbus' assertions are closely related to an active
overt attention process, drawing heavy influence from top-down
bias. The critical importance of task in attention, and overt
attention specifically is well supported as discussed in a number of
recent studies and review papers addressing the relative impor-
tance of task and top-down cues [25,12,40,27,47,57,46,2].

While recent efforts leave little doubt that observed fixations
provide a window into cognitive state or task directives, there is
remaining benefit in examining task predictability from gaze sta-
tistics. One evident benefit from an applied perspective is the
capability to infer task or intentions from fixations for applications
in human machine interaction and human centric computing.
Additional benefits of a more general nature arise from examining
the ease with which different tasks may be distinguished based on
gaze patterns, and in determining which features successfully
discriminate between tasks. The degree of task separability has
value in understanding similarity among visual and attentive
mechanisms recruited for different tasks. Determining specific
factors that distinguish tasks also points to targets for more careful
examination in targeted experimental studies. In the domain of
task prediction, prior work has focused heavily on confirming or
denying the hypothesis that task may be predicted from gaze. For
this reason, there has been a strong emphasis on prediction
accuracy with less consideration of the role of different image or
gaze related statistics in determining prediction performance. The
work presented in this paper expands on the body of research
involving task prediction in addressing the following important
questions:

1. Do relatively coarse grained tasks present distinct gaze statistics?
While several different sets of tasks have been examined in the
literature, we consider task definitions that reside at a relatively
general or coarse-grained level of abstraction. This serves to
contribute to the growing body of efforts examining task
prediction, and also to add diversity in the types of task sets
considered.

2. What methodological considerations are most critical to drawing
value from efforts in task prediction? If the goal of task prediction
is to achieve something beyond confirming or denying Yarbus'
assertions, there is value in ensuring that methodology allows
for analysis beyond comparing prediction accuracies. We
therefore employ methods for task prediction that are amenable
to considering the relative importance of associated gaze and
image related statistics, and discuss additional considerations of
importance at the level of methodological details.

3. Which gaze statistics are most important? In considering a set of
relatively coarse grained task directives and choosing suitable
methods, we aim to establish which gaze statistics or image
derived features seem to diverge most across different task
definitions. This provides insight into information represented
within different types of gaze or image related statistics.
Please cite this article as: J.F.G. Boisvert, N.D.B. Bruce, Predicting task
dynamics, and image features, Neurocomputing (2016), http://dx.doi
4. What does task prediction tell us (and not tell us) about vision?
Task prediction establishes that different tasks may be dis-
tinguished on the basis of gaze statistics. Results presented in
this paper further reveal the relative importance of different
types of features for the coarse-grained tasks examined in this
paper, and also within existing studies. However, it is important
to address the limitations on what studies in task prediction are
able to convey about human vision. An additional goal of this
paper is therefore to establish what benefits and limitations
exist in examining task specific behaviour within a task predic-
tion paradigm.

These four questions form the core of motivation for the work
presented in this paper, and its novelty. First, we consider a very
different set of task defined gaze data than has been considered
previously, providing some new observations about challenges in
this problem domain. More importantly though, we also explore in
detail methodological considerations for approaching work in
predicting X from gaze, where X might correspond to an assigned
task, affective response to images or environment, or any other
measurable factors. This is achieved in highlighting the impor-
tance of considering different types of features, and associated
subsets while also applying predictive methods that offer feedback
on the relative value of said features.

The balance of the paper is structured as follows: in Section 2
we present a survey of studies that emphasize task prediction
highlighting differences in the set of tasks considered, methods
and accuracies achieved across these studies. Section 3 presents
the experimental methods that are exercised in this paper. This
includes further details on the dataset, and types of features
considered for task categorization. Following this, in Section 4, we
present the relative classification performance that is achieved in
considering the spatial distribution of fixations, local features at
fixated locations, fixation dynamics and global scene structure.
This analysis considers different conditions, including pooled
fixation data across all observers, as well as fixations for single
observers subject to different methods of partitioning the image
set. Various combinations of 4-way, 3-way and binary classifica-
tions are considered where appropriate to shed further light on
factors that separate tasks. We discuss the broader implications of
this analysis in Section 5, including limitations and possible
fruitful directions forward. Finally, Section 6 summarizes impor-
tant results from this paper in addressing the role of task in
observed fixation behaviour.
2. Prior work in task prediction

There are a variety of recent studies that consider this problem
with direct reference to Yarbus' work, or specifically involving a
classification paradigm for assessing the predictability of task from
fixation data. DeAngelus and Pelz [15] re-examined Yarbus' work,
including tools, methods, and implications of Yarbus' findings.
They also replicated Yarbus' original experiment using updated
methods and a larger pool of participants and paintings for fixa-
tion recording. Their results demonstrated patterns consistent
with Yarbus' data for Repin's painting using modern eye tracking
devices, while restricting observations to a shorter time course.
Castelhano et al. [10] showed that an observer's task (object search
and memorization) influences eye movement behaviour at the
level of fixation durations and saccade amplitudes, specifically at
the level of aggregate eye movement measures rather than indi-
vidual fixation or saccade statistics. In the case of the memoriza-
tion task, a larger area of the image was fixated and while the
average fixation duration did not vary significantly between tasks,
certain areas were re-fixated (approximately) increasing their total
from eye movements: On the importance of spatial distribution,
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fixation duration. These results were observed in viewing photo-
graphs of natural scenes for an object search task and a scene
memorization task. Mills et al. [36] also examined the impact of
task on spatio-temporal fixation statistics with similar findings. A
different task set was used in this case with free-viewing and
pleasantness tasks added. The memorization task focused on the
scene rather than objects, and the search task involved finding an
“N” or “Z” that had been added to the scene, rather than a con-
textually appropriate object. While many of the results of the Mills
et al. [36] study mirror those of Castelhano et al. [10], the average
fixation duration varied more between tasks, specifically in the
first few seconds of observation. The authors attributed this dis-
crepancy to differences in task design or details of how results
were analyzed. Tatler et al. [48] provide a detailed examination of
Yarbus' body of work and the historical context surrounding it.
Following this biographical overview an experiment was per-
formed using a photograph of Yarbus. Results demonstrated that
task influences the features fixated in viewing faces, and also that
the importance of task in viewing extends to simpler types of
visual stimuli.

Greene et al. [19] present a study suggesting that the relation
between task and fixation behaviour may be overstated based on
an inability to predict task from the fixation data captured for
Yarbus style experiments. The feature vector used in this paper
was composed of summary statistics of the observers fixations:
(1) number of fixations, (2) the mean fixation duration, (3) mean
saccade amplitude, and (4) percent of image covered by fixations
assuming a one-degree fovea. These statistics had been used in
previous work on scanpath analysis [36,10]. Also considered, was
the proportion of fixation duration on various regions of interest:
(5) faces, (6) human bodies, and (7) objects. The results from the
Greene et al. [19] study demonstrated the ability to identify both
the image and observer identity but an inability to predict the
corresponding task. Subsequent efforts using this same data have
demonstrated that while this presents a challenging classification
task, above chance scores are possible with careful feature selec-
tion [2], division of data [29], or using Probability Density Func-
tions and Hidden Markov Models to model dynamics of scan-paths
and latent contributions of covert attention [22].

Borji and Itti [2] re-considered the Greene et al. [19] data, but
chose to include low-resolution fixation density patterns as part of
the evaluated feature set. This resulted in above chance perfor-
mance of 34.14% accuracy across 4 tasks (25% chance-level). They
also conducted a second experiment, mirroring Yarbus' original
7 task experiment, with prediction results of 24.21% when con-
sidering 7 tasks (14.29% chance-level). Their improvement of
accuracy in the inference problem by nearly 10% above chance was
achieved principally by revising the feature set and inference
methods used. Kanan et al. [29] approached the Greene et al. [19]
data by first reproducing the original experiment with similar
results. To preserve the temporal information for eye movements a
Fisher Kernel Learning (FKL) algorithm was used, that allowed the
variable number of time-series statistics to be compressed into a
single feature vector. They also performed task prediction using
two within-subject prediction experiments. For the first this
involved leave-one-out cross-validation using 19 of the 20 trials to
train the SVM, and testing with the remaining single trial, this was
repeated for each possible leave-one-out combination (20 total). In
the second condition they trained the SVM using 4 of the 5 trials
for each task, and used the remaining 4 trials (1 per task) as a test
set, repeating this for each combination (625 total). Due to the
increased number of training and testing trials to consider in the
second approach, the number of states in the FKL was decreased
from 10 to 5. The first approach resulted in a prediction accuracy of
52.9% (25% chance-level) using the FKL algorithmwhile the second
approach returned a lower 34.1% (25% chance-level) accuracy.
Please cite this article as: J.F.G. Boisvert, N.D.B. Bruce, Predicting task
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In more recent work Haji-Abolhassani and Clark [22] focused
their attention on the Greene et al. [19] data, having previously
demonstrated good prediction accuracies on synthetic images
[20,21]. An important contribution of their work is the use of
Hidden Markov Models to estimate hidden state information from
observed fixations to simulate the role of covert attention. The
authors noted that in many cases the Centre of Gaze (COG) did not
match the Focus of Attention (FOA). This was motivated by the
observation that fixations did not always land on task specific
objects, but observers where shown to be aware of the “over-
looked” objects. To account for covert attention the authors used a
Gaussian Mixture Model to capture task relevant spatial positions
and define the observation likelihoods via probability density
functions. Probability densities correspond to different states
derived from task-relevant objects/regions. To apply this to the
Greene et al. [19] data they used k-means clustering on the
aggregated fixations for each image-task pair, to generate a set of
regions likely to be task-relevant. Using this approach they were
able to achieve a prediction accuracy of 59.64% (chance: 25%)

Coco and Keller [13] also revisited the Greene et al. [19] data,
hypothesizing that the tasks considered may have required only
visual processing rather than including other cognitive modalities
such as language processing. By their hypothesis, similar proces-
sing requirements should result in similar strategies for allocation
of attention, leading to harder inferences. To verify that tasks
requiring different cognitive processes can be classified with
greater ease, Coco and Keller [13] carried out an alternative
experiment. Tasks chosen for the experiment were: visual search,
object naming and scene description. Each of these tasks required
a different mixture of visual and language processing. Each task
was shown to a different group of participants, 25 for search and
scene description each and 24 for object naming. The authors used
the same 7 features as Greene et al. [19] as well as another set of
15 corresponding to temporal fixation measures. Along with in-
depth analysis of the recorded eye movement features across the
various tasks, the authors also trained 3 different types of
regression models to predict the observers tasks: multinomial
regression, least-square angle regression, and support vector
machines. Their accuracy averaged over all 3 tasks was 81%
(33.33% chance-level). They also produced classification accuracy
of 76% using only the features from Greene et al. [19].

In contrast, the data presented by Henderson et al. [26],
includes 196 natural images and 140 images of text, and 4 tasks
consisting of search, memorization, reading and pseudo-reading.
Task performance in this case was approximately 80% likely owing
in part to the distinct nature of the chosen tasks. In addition, the
mix of natural scenes and text involves very different stimuli,
implying the possibility of stimulus driven differences as opposed
to principally task driven differences [37].

Bulling et al. [8] have presented a system to infer high-level
contextual cues called EyeContext. Four participants were fitted
with mobile eye tracking equipment consisting of 5 electrodes
centred around the right eye, and were tasked with self-
annotating various cues encountered during the day. The 4 cate-
gories participants were asked to track were: “social (interacting
with somebody vs. no interaction), cognitive (concentrated work vs.
zleisure), physical (physically active vs. not active), and spatial (inside
vs. outside a building)”. The eye movements recorded by the elec-
trodes were encoded into fixed-length words composed of sym-
bols, with a saccade to the left represented by the character ‘L’ and
diagonal right represented by a ‘B’. A sum total of 42.5 h of data
was collected across the 4 participants. They trained a string ker-
nel SVM with 70% of the data and tested classification using the
remaining 30%, using a 5-fold cross-validation. The mean precision
and recall obtained were 76.8% and 85.5% respectively. This
research illustrates a novel way that task inference and eye
from eye movements: On the importance of spatial distribution,
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tracking can be approached as this set of experiments more closely
resembles real-life tasks and conditions.

A related effort considers the problem of recognizing the type
of document an observer is currently reading. Kunze et al. [32]
performed an experiment involving 8 participants situated in
5 different environments and reading 5 different document types.
This is implicitly a task inference prediction as the different
documents types are likely to elicit behaviours typical of highly
learned document dependent strategies for reading. To track eye
movements in various environments, observers were fitted with
eye tracking glasses. In each case, 10 min of document reading was
recorded and subsequently divided into 1 min windows, as input
to a decision tree (C4.5/J48). On a per-observer basis the decision
tree achieved a accuracy of 99%, whereas average accuracy was
74% when observer identity was unknown and all observer data
was pooled. Prediction accuracy increased to 90% for this latter
condition when using majority voting over the entire 10 min of
captured data. As noted by the authors this research could be used
in reading assistance and logging of reading activities, and may
also be expanded to other non-reading tasks.

Cerf et al. [11] investigated the power of saliency maps to
predict which image an observer fixated using only their scanpath
data. While they achieved good results by combining the scan-
paths from all observers, superior results were achieved when
individual observers were factored into the prediction. They also
proposed a metric to quantify the “Decodability” of datasets from
certain feature sets (e.g. scanpaths), which may allow for the
clustering of observers based on the features appealing to each
individual. One of the uses of such features involves separating
samples from special patient populations from those of control
observers. This was investigated by Tseng et al. [51] who dis-
tinguished children with attention deficit hyperactivity disorder
(ADHD) or fetal alcohol spectrum disorder (FASD) from a control
group using a variety of features with an emphasis on saliency-
based features. They also found that elderly patients with Par-
kinson's disease (PD) could be identified using primarily oculo-
motor related measurements. In related work, Jones and Klin [28]
studied infants from the age of 2 to 24 months and noted that
infants that were later diagnosed with autism spectrum disorders
(ASDs) exhibited a mean decline in fixations of caretakers eyes
between 2 and 6 months of age.

In this paper we employ Random Forests [4] for classification,
and the details associated with this process are further explained
in Section 3. The reason for choosing Random Forests for classifi-
cation in our work, is the capacity to identify the value of different
features in successfully predicting the observer's task. This pre-
sents the possibility to identify important, and sometimes subtle
differences in behaviour corresponding to different tasks, from a
vantage point defined by the features that are considered. Random
Forests are also employed by Sugano et al. [42] to predict which of
two images presented side-by-side on a computer monitor is
preferred by an observer, based on eye movements. Their experi-
ment was split into two phases: In the first phase, 11 individual
observers were shown 80 pairs of image with no instruction. This
was followed by 400 pairs of images with instructions to explicitly
choose a preference between the two via a manual key press.
Finally, the original 80 pairs were again shown but with the pre-
ference instructions. A total of 25 features were computed from
fixations and saccades and used to train the Random Forests. The
mean accuracy was 73% (50% chance) when tested on the 80 image
pairs with explicit preference instructions. When testing on the 80
image pairs with no instructions (free viewing) accuracy was only
61% (50% chance).

Important characteristics of efforts involving task prediction
from gaze are summarized in Table 1.
Please cite this article as: J.F.G. Boisvert, N.D.B. Bruce, Predicting task
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3. Experimental methods

In the following, we outline the details of the data considered
in our analysis, classification methods and feature types con-
sidered for task prediction. In short, the data considered focuses
on relatively general task directives related to free viewing, object
driven viewing, or saliency driven viewing. Features include the
spatial distribution of fixations, local oriented edge structure/
contrast at fixated regions, holistic scene structure, and fixation
specific statistics (e.g. saccade amplitudes). While a number of
different classifiers have been examined, we have primarily con-
sidered Random Forest based bootstrap aggregation [4] in our
analysis. The reasons for this, details of features considered, and
the specifics of the dataset are further discussed in the remainder
of this section.

3.1. Fixation data

In this paper we examine the data from Koehler et al. [30]
which includes fixation data for a set of 800 images associated
with a number of different tasks. For each of the 800 images, each
participant was asked to perform 1 of 3 viewing tasks (free
viewing; object search; saliency viewing) or an explicit judgement
task that required identifying the most salient location in the
image through manual selection. A minimum of 19 (19–22) par-
ticipants performed each viewing task and 100 participants per-
formed the explicit judgment task given that each sample from
participants yields only one observation per image for this task. In
the free viewing task, observers were instructed to freely view the
image with no further direction given. For the Object Search task
the participants were given the name of an object to find in the
scene, with the object present in 50% of cases shown. In the Sal-
iency Search task observers were asked to judge whether the left
or right half of a scene contained the most salient region. Finally in
the explicit judgement task, observers were asked to use the
computer mouse to click on what they believed was the most
salient point in each image. Fixation data was collected using an
EyeLink 1000 System at 250 Hz. For more detail on the precise
methods, the reader is referred to the original experimental
description [30]. Representative samples of images from this
dataset, and accompanying heatmaps showing fixation (or click)
distribution across observers is shown in Fig. 1. Each exemplar
image has 4 associated heatmaps corresponding to explicit jud-
gement (top left), free viewing (top right), object search (bottom
left) and saliency viewing (bottom right) respectively. In practice,
an ideal visualization of task differences might involve decom-
position of the data according to temporal windows (e.g. first
second, first 3 seconds etc.). Given that this dataset is based on a
relatively small number of observers, and short time course for
viewing, such visualizations result in a distribution of gaze points
that is sufficiently sparse that it does not lend itself well to
visualization in the form of a heatmap for shorter time windows.
With that said, as results in the later parts of this paper reveal,
dynamics of fixations may be one factor that is especially variable
as a function of task, and therefore there is great potential to
garner understanding of task relevant differences based on tem-
poral slicing of data, provided the volume of data permits this.

Fixation data for all three of the viewing tasks, and the explicit
judgement data is used in our analysis. The explicit judgment data
was only used in one of the prediction experiments presented in
this paper, since the distinct nature of this data and absence of
spatial fixation bias makes discriminating this task from the gaze
based tasks relatively easy. In addition, given only one data-point
per image for the explicit judgement case, the only natural com-
parison using this data is in aggregating data across all partici-
pants. Therefore, for the aggregate classification case, the fixation
from eye movements: On the importance of spatial distribution,
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Table 1
Past task-prediction contributions.

Authors Obs. Size Tasks Features Methods Performance

Henderson et al. [26] 12 ⋄ 196 images ⋄ 140
texts

⋄ Search ⋄ Memory ⋄ Reading ⋄
Pseudo-reading

⋄ Eye movement measures ⋄ Multivariate pattern analysis 68–80% chance:25%

Haji-Abolhassani and Clark [23]
(Ex1)

6 180 images ⋄ Counting 6 object types ⋄ Gaussian mixture model capturing task
relevant spatial positions

⋄ Hidden Markov models 71.5–88.5% Indv task predictions

Haji-Abolhassani and Clark [23]
(Ex2)

6 26 images ⋄ Spelling 3 letter words ⋄ Gaussian mixture model capturing task
relevant spatial positions

⋄ Hidden Markov models 75.8–87.7%

Lethaus et al. [33] 10 70 km simulated
driving

⋄ Overtaking ⋄ Following ⋄
Overtaking mult.

⋄ Fixation time distribution across 4/5 zones
during 5/10 s window

⋄ Artificial neural net ⋄ Bayesian net
⋄ Naive Bayes classifier

Real-time:85% 1 s delay:90%

Bulling et al. [8] 4 Recording of workday
(�10 h)

⋄ Social ⋄ Cognitive ⋄ Physical ⋄
Spatial

⋄ Eye movement encodings ⋄ SVM Precision:76.8% Recall:85.5%
chance:25%

Kunze et al. [32] 8 5 books ⋄ 5 document types ⋄ Saccade direction counts, mean & variance ⋄
95% quartile distance ⋄ Slope over fixations

⋄ Decision tree Independent:74% Dependent:99%
chance:20%

Greene et al. [19] 16 64 images ⋄ Memory ⋄ Decade ⋄ People ⋄
Wealth

⋄ Eye movement statistics ⋄ Linear discriminant ⋄ Correlation
methods ⋄ SVM

25.9% chance:25%

Kanan et al. [29] 16 64 images ⋄ Memory ⋄ Decade ⋄ People ⋄
Wealth

⋄ Eye movement statistics ⋄ Cartesian
coordinates

⋄ SVM Within subject: 37.9% chance:25%

Haji-Abolhassani and Clark [23] 16 64 images ⋄ Memory ⋄ Decade ⋄ People ⋄
Wealth

⋄ GMM for task relevant positions determined
by fixation clusters (k-means)

⋄ Hidden Markov models 59.64% chance:25%

Borji and Itti [1] (Ex1) 16 64 images ⋄ Memory ⋄ Decade ⋄ People ⋄
Wealth

⋄ Eye movement Statistics ⋄ Spatial density ⋄ KNN ⋄ RUSBoost 34.14% chance:25%

Borji and Itti [1] (Ex2) 21 15 images ⋄ Yarbus' original 7 tasks ⋄ Eye movement statistics ⋄ Spatial density ⋄ K-NN ⋄ RUSBoost 24.21% chance:14.29%
Coco and Keller [13] (Ex2) 24 24 images ⋄ Visual search ⋄ Object-naming

⋄ Scene description
⋄ Eye movement statistics ⋄ Multinomial regression ⋄ Least-

square angle regression ⋄ SVM
81% chance:33.33%

Sugano et al. [42] 11 480 img. pairs ⋄ Free view ⋄ Preference ⋄ Fixation & Saccade measure statistics ⋄ Random Forests 61% and 73% chance:50%
Boisvert and Bruce (this paper)

(Agg)
19 800 images ⋄ Free view ⋄ Object search ⋄

Saliency ⋄ Explicit sal.
⋄ Spatial density ⋄ Random Forests 69.63% chance:25%

Boisvert and Bruce (this paper)
(Indv)

19 800 images ⋄ Free view ⋄ Object search ⋄
Saliency

⋄ Spatial density ⋄ HOGs ⋄ LM filters ⋄ Gist ⋄ Random Forests 56.37% chance:33.33% 76.93% (binary
task prediction)
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Fig. 1. A representative sample of images from the Koehler et al. dataset [30]. A heatmap is superimposed on each image showing the distribution of fixations (or clicks for
explicit judgement) across each task. Images and their corresponding heatmaps for each set of images correspond to: explicit judgement (top left), free viewing (top right),
object search (bottom left), saliency viewing (bottom right).
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data for each image/task combination is pooled across all obser-
vers. In contrast, the individual classification cases that make up
most of the analysis in this paper consider each image-participant-
task sample as a separate case. It is important to note that in tests
of classification performance, our results consider explicitly the
role of prior exposure to the test image set during training pro-
viding additional observations relevant to task prediction in a
broad sense.

3.2. Features

A central goal of the current work lies in evaluating both the
role of spatial position (or density) of fixations in task prediction,
but also the diagnostic value of specific features or image structure
at fixated locations. We have also examined whether scene
structure combined with the spatial distribution of fixation pat-
terns might provide a useful diagnostic. To this end, we have
selected a number of features for testing task classification per-
formance. Each type of feature is considered in isolation and also
in various combinations with other types of features. With respect
to choice of features, we have attempted to minimize the com-
plexity of features to facilitate the basic understanding of factors
driving gaze that may be drawn out of the analysis. This includes
features that characterize local, and global image structure (e.g.
edge content and configurations), overall density of fixations, and
gaze related statistics. With that said, it is important to note that
one contribution of this paper is a methodological framework for
analyzing modes of viewing that are elicited by different tasks. For
this reason, there is no reason that more complex features might
be considered. One natural possibility in this respect is computa-
tional measures of visual saliency. We have intentionally excluded
saliency from consideration given that interaction between sal-
iency and this data has been examined by Koehler et al. [30] (albeit
with a different objective), and some tasks have strong ties to
saliency. In the later part of this paper, we also touch on the
apparent performance of semantically relevant patterns, and fea-
tures motivated by modern methods in deep learning will no
doubt bear fruit in understanding task relevant factors that con-
tribute to observed gaze patterns.

3.2.1. Fixation density map (density)
An alternative to considering raw fixation positions given their

relative sparsity (in pixel terms) is considering a more continuous
density map derived from the raw fixations. This may be produced
by way of convolution of the fixation map with a Gaussian profile
[5], and/or sub-sampling to produce a coarse-grained continuous
spatial density map for task prediction [2]. The first set of features
we have considered are spatial densities of fixations. We represent
this quantity by generating a density map of the fixations on the
405�405 pixel images. A continuous density map is produced by
convolving the image with a 2D Gaussian envelope with standard
deviation corresponding to 1 degree of visual angle (27 pixels).
These density maps are then down-sampled by a factor of 15,
which results in a 27�27 map or a 1�729 feature vector.

Aggregate density map (aggregate density): We also tested an
aggregate density map approach, where the fixations from all
observers (as opposed to single observers) for a single image
were merged to form a density map. That is, for image number
iAf1;…;800g and task jAf1;…;3g fixations across the 19 obser-
vers were aggregated into a single density map. For the explicit
judgment task, the aggregated data is based on pooling of the
explicit judgements across 100 participants. This yields a number
of observations per image similar to the fixation data. This
pooling of the fixation data serves primarily to facilitate a com-
parison between data from viewing tasks, and from the explicit
judgment task.
Please cite this article as: J.F.G. Boisvert, N.D.B. Bruce, Predicting task
dynamics, and image features, Neurocomputing (2016), http://dx.doi
3.2.2. The Leung–Malik (LM) filter bank
The LM filter bank [34] consists of 4 Gaussians filters corre-

sponding to different spatial scales, 8 Laplacian of Gaussian (LoG)
filters at different spatial scales, and first and second derivatives of
Gaussians for each combination of 3 spatial scales and 6 different
orientations (36 additional filters) for a total of 48 filters. To create
an LM based feature vector, each image was convolved with the
LM-Filter bank at its original scale, and the response of the 48
filters was sampled at each fixated location. Given that the total
number of fixations is variable for any given image (generally from
7–15 fixations), filter responses across all fixations for an image
were converted to summary statistics given by the mean response,
and the standard-deviation of the response for each filter type
across all observed fixations. This produces a 96 dimensional
feature vector that captures the mean response, and variability in
response of each of the filter channels for fixated regions of an
image. This results in a (19�800�3�96) set of features for all
combinations of image, participant and task. It is worth noting that
the LM filter bank is chosen in part for its similarity to model
simple cells represented within V1 and characterized by Gabor-
like and center-surround receptive field profiles. This choice is
relevant to making stronger assertions about human vision
through task analysis by classification, and is an important con-
sideration for future efforts in task prediction going forward.

3.2.3. Histogram of oriented gradients
Histograms of Oriented Gradients are widely used in the

computer vision literature [14], and have shown success in a range
of tasks including object detection [17] or scene classification [56].
The HOG descriptor consists of histograms corresponding to
oriented edge structure at different spatial scales within a local
window of the image. Such features therefore capture coarse-
grained summary statistics on the distribution of angular and
radial frequencies represented within a local region of an image.
While it's evident how such a representation may be used to
determine whether an object is present at a given location, it's also
natural to consider whether there is some inherent bias in edge
content expressed in viewing behaviour across different tasks.
Fixation based HOG features were generated in a fashion similar to
the LM filter bank: At each fixated location in the original image,
HOG features are extracted corresponding to a 65�65 image
patch centred at the fixated location [16]. This results in a 31-
dimensional feature vector for each fixation. Again, given variable
numbers of fixations, the 31 dimensional HOG feature vector was
converted to a summary representation, in considering the mean
and standard deviation of HOG features across all fixations. Means
and standard deviations are again coupled with a count of the total
number of fixations for the reason stated above, yielding a 63
dimensional feature vector (45,600�63 for all data).

3.2.4. Scene gist
We have also considered a representation that captures the

holistic structure of a scene based on the Gist descriptor [38]. The
Gist descriptor is produced in sampling the responses of local fil-
ters sensitive to intensity gradients at different spatial scales, and
over a grid of sub-windows on the image. These are subsequently
converted to low dimensionality holistic receptive fields through
PCA. This representation has been demonstrated as capable of
classifying the type of scene (indoor, outdoor, forest, city, etc.) [38],
and also having use in improving performance of models for
predicting gaze locations [50]. The motivation for this set of fea-
tures, is to examine whether general holistic scene structure is
able to augment the ability to predict task when coupled with
spatial densities of fixations.
from eye movements: On the importance of spatial distribution,
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3.2.5. Feature combinations
The relative value of individual base features types is impor-

tant, but we are also interested in additional value that may be had
in leveraging multiple distinct feature types for prediction. To this
end, a number of composite feature sets have also been considered
based on various combinations of spatial fixation density maps,
fixated image features, scene structure and dynamics. One moti-
vation for the incremental composition of features in our analysis
is in establishing a more detailed understanding feature impor-
tance. The incremental gains in evaluating different subsets of
features, provides additional information on redundancy in infor-
mation captured by different feature sets with respect to the sta-
tistics that define task boundaries.

3.3. Classifiers

For results presented in this paper, Random Forests [4] are used
for classification.1 In all cases, 50% of the data was used for
training, and the other 50% for testing. Classification is performed
on different combinations of spatial and/or structural features to
assess the relative efficacy of different cues and determine pre-
diction performance.

Random Forest classification relies on the consensus predic-
tions of a number of distinct decision trees. Each decision tree
comprises a hierarchical arrangement of decision nodes. For
example, the learning process might result in a root node that
passes on an observation to one child node if the spatial fixation
density for a particular location in the image is above some
threshold, and to the other child node if the density is below this
threshold, as depicted in Fig. 2. After a series of decisions of this
type, which may also include branches on nodes that include
feature based (HoG, LM), contextual statistics (Gist), or fixation
statistics (number of fixations, saccade amplitudes), a leaf node is
eventually reached that indicates the predicted task. An effective
strategy for classification is to use a number of such decision trees
in concert with an overall classification decision based on a
majority weighted vote from individual decision trees. This can
help to control against overfitting the data, but also brings addi-
tional benefits in diagnosing the value of features. In generating a
collection of decision trees that make up a Random Forest, each
decision tree is produced from independent data samples. Data
samples from the training set are selected with replacement to
produce a unique training set for each individual tree. Samples
from the training set that are not included in a given sample are
1 Alternative classification methods were also evaluated. The rationale for
testing an array of classification methods was to confirm that results are repre-
sentative of features chosen for prediction, and not the choice of classifier. All other
classification methods performed no better than Random Forest based classifica-
tion,and Random Forest based classification was more stable (similar performance
using alternative methods sometimes required careful choice of parameters).

1. Neural networks: This evaluation employed multi-layer neural networks com-
prised of 2 or 3 layers of sparse autoencoders [53], with the weights of the
sparse autoencoder training used to initialize a standard 2 or 3 layer back-
propagation [54] network for classification. Performance was not any different
than using Random Forests for the best cases, however sensitivity to parameters
resulted in much poorer performance without careful tuning.

2. Lasso regression [49]: Regularized L1 Logistic regression was also evaluated for
classification performance. With an appropriate choice of λ, results were on par
with accuracy using Random Forests, however determination of this value was
non-trivial, in part because this was dependent on features used for classifica-
tion. In addition, mixed feature sets required normalization to achieve equiva-
lent performance.

3. AdaBoost [18]: Several variants of AdaBoost were also tested. This method was
relatively easy to obtain good prediction results, although in most cases accuracy
values fell somewhat short of those produced by Random Forests. Among
adaptive boosting methods, performance was best for the pseudo-loss variant
of the standard algorithm [18] (as compared with LPBoost, TotalBoost and
RUSBoost).

Please cite this article as: J.F.G. Boisvert, N.D.B. Bruce, Predicting task
dynamics, and image features, Neurocomputing (2016), http://dx.doi
referred to as out of bag samples. Performance for a decision tree
on out of bag samples provide one useful characteristic for
understanding sample and feature importance. In the training
process, when considering features to branch on in the tree, only a
subset of the total variables/features is considered. This also
introduces additional randomness that serves to produce diversity
in the structure of trees that make up the Random Forest. In our
evaluation, these bootstrap samples for decision nodes were based
on

ffiffiffiffi

N
p

samples, where N is the total number of statistics (features)
used by the classifier. Factors that have a greater impact on pre-
diction performance have more diagnostic value and are more
important features in separating different task categories. A
determination of feature importance may be made by permuting
the values of a particular feature across different data samples. For
example, the mean response of one of the LM filters across fixa-
tions provides a predictive statistic for each image. If these values
are shuffled across the samples, it is possible to measure the
impact on performance. This is performed for out of bag samples,
providing a measure of feature importance for all of the individual
features. This is an important property of this classification strat-
egy, as it brings the additional value of discerning relative feature
importance to understanding task-feature relationships. The
detailed mathematical justification for this analysis is beyond the
scope of this work, but the interested reader may refer to the
statistical motivation given by Breiman [4].

A range of values was considered for the total number of voting
tree-based classifiers including 50, 100, 200, 500, 1000, and 2000
trees respectively. This is in consideration of determining a ceiling
on classification accuracy, but also provides confidence on the
stability of the classification method used in much of the analysis.
That is, a variable number of trees are considered to ensure that
performance differences are due to feature differences rather than
the complexity of the classifier.
4. Results

In the following, we examine the performance for the Random
Forest classifier across the various feature sets, and in considering
various combinations of features. This has been examined for the
aggregate case (all observer data pooled), as well as the individual
cases. In addition, we also examine multi-way classification and
pair-wise binary classification to examine the separability of dif-
ferent task directives based on the fixation data. The following
demonstrates that most of the features considered present sig-
nificantly above chance performance, and also notably, that
accuracy is dependent on the division of images among training
and test sets.

4.1. Aggregate observers

Aggregating data across observers for each image/task combi-
nation results in 3200 (4�800) image/task pairs. Half of these
instances were used to train a Random Forest while the other half
were used for testing only. Only the spatial densities were used for
this test case as the resulting prediction rate is sufficient to show a
strong degree of predictability based on spatial bias alone. This is
especially true of explicit judgements since the associated data is
not subject to the same gaze driven noise factors such as center
bias or imprecise saccade targeting [52,43]. More detailed analysis
is therefore reserved for the 3-way classification case, where the
explicit judgement data across 100 observers is not included.
Given that the spatial density features have a topographical
organization, it is possible to visualize the importance profile in a
topographical layout (Fig. 3). It is evident that the central region is
of greatest importance, and that the degree of spatial (central)
from eye movements: On the importance of spatial distribution,
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Fig. 2. A sample of decisions that may be taken by the nodes within a decision tree, the resulting leaf node corresponds to the tree's vote. Votes are collated across all trees
comprising the Random Forest to determine decision of the ensemble.
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Fig. 3. Importance of spatial density statistics to classification performance in the
aggregate density map. Importance measures are arranged topographically corre-
sponding to their position in the fixation density map. This indicates that the
relative importance of observations follows a concentric spatial profile.

Table 2
Aggregate density map results.

Trees All Free/Obj Free/Sal Free/Exp Obj/Sal Obj/Exp Sal/Exp

50 70.87 84.38 66.13 88.25 89.88 97.50 90.00
100 69.31 83.25 65.75 89.75 89.75 97.75 89.75
200 69.87 83.63 65.38 89.38 90.00 97.62 89.88
500 68.87 84.13 65.75 89.25 89.75 97.50 89.88
1000 69.44 83.50 66.75 89.38 90.00 97.75 90.12
2000 69.19 83.87 66.37 89.50 90.25 97.62 89.62
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bias, is one factor that has diagnostic value in determining the task
being performed. This is consistent with many observations of the
prominent degree of central bias present in gaze patterns,
although this also hints that the degree and shape of central bias is
task variant. Results for variable numbers of trees appear in
Table 2 revealing the relative stability as a function of number of
trees. Subsequent results for individual observers present only
results corresponding to 2000 trees given this relative stability.
Please cite this article as: J.F.G. Boisvert, N.D.B. Bruce, Predicting task
dynamics, and image features, Neurocomputing (2016), http://dx.doi
4.2. Individual observers

For task prediction based on data from individual observers, we
consider the first 19 observers across the 3 task conditions to
equate the number of observers per task. In total, there are 19
observers�3 tasks�800 images for a total of 45,600 cases to be
distributed among training or testing. To provide deeper insight
into the task prediction problem in general, we have considered
two different partitions of this data as follows: Partition I: all of the
observers, and all tasks are represented for half of the images. This
implies that classifier predictions are not based on any patterns
specific to individual images seen in training. Partition II: all
observers and images are represented, but only half of the tasks
carried out by each observer appear in the training set, and the
other half in the test set (with equal number of samples of each
task in training and test sets). This allows the relative importance
of the specific images used in training, and importance of the size
of the image set to be discerned. These two data partitions are
referred to as P(I) and P(II) from hereon.

Classification results corresponding to the various feature/task
combinations are summarized in Table 3 for P(I), and in Table 4 for
P(II). There are some notable difference in the efficacy of different
features, and also a significant impact on accuracies as a function
of how data is partitioned. These points are discussed in detail in
what follows, along with careful analysis of diagnostic measures of
feature importance.

4.3. Spatial density

Similar to the case of classification based on aggregated
observers, we assess the relative importance of different locations
in the spatial density map (Fig. 4). The individual spatial densities
shown in Fig. 4 also demonstrate significant weight in the
importance of centrally located positions in the density map, albeit
the individual case is characterized by a more pronounced peak at
the very centre, accompanied by a more diffuse spread of feature
importance over the scene outside of the centre. This again points
to the importance of eccentricity of fixations as an importance
distinction between tasks. It is also interesting to note that even
relatively central fixations provide evidence diagnostic of task
when considered as an ensemble. The importance of spatial
(center) bias within studies of fixation behaviour has been
explored in detail, and the data presented by Tatler [43] reveals a
similar trend to these observations for two very similar task
definitions but corresponding to a different set of image data.
from eye movements: On the importance of spatial distribution,
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Table 3
Individual density map results P(I) – all observers, all tasks, 50% of images.

Spatial density LM filters HoG features Gist Sacc. ampl. Num. fixations All tasks Free. vs. obj. Free. vs. sal. Obj. vs. sal.

Chance 33.33 50.00 50.00 50.00
✓ 48.34 66.55 58.89 66.13

✓ 42.98 65.05 52.32 62.18
✓ 41.06 61.98 51.36 60.20

✓ 54.54 76.89 56.69 75.65
✓ 50.65 73.11 54.81 71.38

✓ ✓ 49.45 73.23 51.84 71.26
✓ ✓ 49.73 73.35 53.52 71.33

✓ ✓ 48.47 66.54 58.80 66.12
✓ ✓ ✓ 50.09 69.94 59.27 68.09
✓ ✓ ✓ 50.26 69.38 59.17 68.19
✓ ✓ ✓ ✓ 51.59 71.34 59.53 69.32
✓ ✓ ✓ ✓ 50.34 69.35 59.00 68.15
✓ ✓ ✓ ✓ ✓ 51.62 71.00 59.48 69.12
✓ ✓ ✓ ✓ ✓ ✓ 53.42 73.41 59.59 71.01

Table 4
Individual density map results P(II) – all images and observers represented, 50% of tasks per observer.

Spatial density LM filters HoG features Gist Sacc. ampl. Num. fixations All tasks Free. vs. obj. Free. vs. sal. Obj. vs. sal.

Chance 33.33 50.00 50.00 50.00
✓ 54.6 76.24 58.22 75.18

✓ 42.89 65.07 51.96 62.83
✓ 43.79 64.60 52.19 62.95

✓ 54.45 76.86 56.69 75.37
✓ 51.04 73.42 54.65 72.13

✓ ✓ 49.79 73.56 53.25 71.58
✓ ✓ 50.39 74.19 53.70 71.89

✓ ✓ 54.74 76.27 58.17 75.27
✓ ✓ ✓ 56.05 77.82 59.58 76.28
✓ ✓ ✓ 56.16 77.70 59.58 76.35
✓ ✓ ✓ ✓ 56.91 78.70 59.81 76.88
✓ ✓ ✓ ✓ 56.11 77.86 59.59 76.33
✓ ✓ ✓ ✓ ✓ 56.74 78.50 60.20 76.82
✓ ✓ ✓ ✓ ✓ ✓ 58.14 79.98 60.16 77.85
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Fig. 4. Importance of spatial density statistics to classification performance in the
individual density map. Importance measures are arranged topographically corre-
sponding to their position in the fixation density map.

J.F.G. Boisvert, N.D.B. Bruce / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎10
Differences in prediction accuracy between P(I) and P(II) are
striking. While spatial density alone is among the more effective
features for task prediction when all images appear in training (P
(II)), its value is diminished significantly when training and test
image sets are disjoint. This has important implications for how
Please cite this article as: J.F.G. Boisvert, N.D.B. Bruce, Predicting task
dynamics, and image features, Neurocomputing (2016), http://dx.doi
studies on task prediction are interpreted, especially in light of the
relatively large image set associated with the data under con-
sideration relative to prior efforts in task prediction. A more
detailed discussion of the implications of this observation appear
in Section 5.

4.4. Local image features

The LM Filters and HoG features alone present similar efficacy
for both P(I) and P(II). This corresponds to approximately 42%
accuracy for the 3-way classification tasks, and approximately 52–
65% accuracy depending on task pairing, with free viewing and
saliency viewing again most difficult to distinguish. In agreement
with prior observations concerning the relative lack of importance
of features at fixated locations, fixated image features alone are
relatively poor at distinguishing between tasks. However, accuracy
as high as 65% for some of the binary classifications suggests that
statistical differences between these cases are not entirely
spurious.

Important to understanding this observation, is the relative
importance of different fixated features to distinguishing tasks. To
support this analysis we present the relative importance of dif-
ferent features from the LM filter set in Fig. 5 based on out-of-bag
analysis corresponding to the Random Forest based prediction. For
illustrative purposes, first derivative filters corresponding to hor-
izonal (red) and vertical (yellow) edge content are highlighted.
There appears to be a consistent advantage to statistics associated
with vertically oriented image structure at fixations in delineating
task. A more detailed illustration of this difference is shown in
from eye movements: On the importance of spatial distribution,
.org/10.1016/j.neucom.2016.05.047i
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Fig. 6, which demonstrates the probability density associated with
horizontal (left) and vertical (right) first derivative LM features for
the 3 tasks. These correspond to features 7 and 10 appearing in
Fig. 5. Free viewing, object search and saliency viewing correspond
Fig. 5. Variable importance for statistics corresponding to mean and standard
deviation of LM feature outputs across fixations. The order of bars in the plot
mirrors the order of filters in the legend below: first row, left to right. Second row,
left to right. Third row, left to right. First derivative filters show systematic variation
as a function of orientation, with vertically oriented filters (yellow) carrying con-
sistently higher predictive value than horizontal filters (red). (For interpretation of
the references to colour in this figure caption, the reader is referred to the web
version of this paper.)
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Fig. 6. Probability density associated with the response of two different LM filters (see
object search (red), and saliency viewing (yellow). Density profiles are shown for the ho
oriented first derivative of Gaussian LM filter (right). The lower frames depict a magnified
colour in this figure caption, the reader is referred to the web version of this paper.)
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to the blue, red and yellow curves respectively. The bottom row
depicts the boxed part of these curves at a higher level of zoom to
better show the separation among feature distributions. For ver-
tically oriented structure, overall separation is greater and also
some degree of separation between the free viewing and object
search conditions emerges. While this analysis does not reveal
much about the reason for these differences, it demonstrates a
subtle difference in structure of content at fixations that may be an
important target for future analysis as it relates to task. It is also
important to note that the value of this information is due chiefly
to an accumulation of very weak evidence across a number of
fixations in yielding task discrimination that is well above chance,
and not any single fixation.

An interesting asymmetry appears in the relative importance of
spatial density, and local image structure for binary task classifi-
cation. There is an advantage for spatial density over local features
in delineating tasks independent of the data partitioning scheme,
but this difference is much larger for P(II). However, the value of
spatial density is invariant to the data partition scheme for dis-
criminating saliency viewing from free viewing. An implication of
this, is that the spatial density profile for saliency viewing and free
viewing differ in a manner that is relatively independent of con-
tent specific to individual images, while object search appears to
carry a spatial density profile that is more highly image specific.
This is also revealing with respect to the level of specificity of
image patterns driving statistical differences across different tasks.

4.5. Global image features

While fixation density for most locations (especially those
proximal to the center) is relevant to task discrimination, feature
importance for Gist features approaches 0 for all Gist feature
dimensions. One possible explanation for this is that the holistic
spatial envelope has a relatively small influence on gaze targets
insofar as it interacts with task. That is, the influence of holistic
scene structure may be relatively strong overall, but task invariant.
An alternative possibility is that the task dependent influence of
holistic/structural differences are already reflected implicitly in the
Magnitude of Filter Output
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spatial density profiles. That is, the Gist based structural repre-
sentation may be a weaker cue when coupled with spatial density
given redundancy in the information they capture. It is also the
case that the number of image samples is small relative to what is
typical for scene classification efforts [50].

4.6. Fixation dynamics

Fixation dynamics associated with the different tasks are
characterized by the total number of fixations, and the amplitude
of saccades observed within each task. These measurements are
surprisingly effective in distinguishing between the tasks con-
sidered. Given that there are significant differences in total num-
ber of fixations (and latency) for the object search task compared
with free viewing, and saliency viewing it is evident that this is a
valuable statistic in distinguishing among these tasks. The prob-
ability density associated with the number of fixations for each
class is shown in Fig. 7.

Perhaps more surprising is the strength of saccade amplitudes
alone in distinguishing between tasks. In particular, for the chal-
lenging case of free viewing vs. saliency viewing, these are among
the most important features alongside spatial fixation density. To
examine this observation in more detail, we plot the relative
importance of first, second and additional saccades made at the
start of each trial in Fig. 8.

Fig. 8 reveals that the amplitude of the very first saccade is
highest in importance, but there is also a high value to the several
subsequent saccades in discriminating between tasks. The prob-
ability density associated with saccade amplitudes is shown in
Fig. 9. This reveals that initially saccade amplitudes for object
search are quite disparate from the other tasks, however, with an
increasing number of saccades object search and saliency viewing
converge, and distinguish themselves from free viewing. This
observation is important in revealing the apparent value of fine
grained temporal dynamics in providing defining traits associated
with different tasks. Given that there exist differences between
features at fixation for long vs. short saccades that are task
dependent, interaction between relative spatial position of sac-
cades and content at fixation is also likely to be relevant to
inferring task [45] even for relatively general tasks definitions such
as those examined in this paper. This also has implications for the
role of task prediction for applications in human centric applica-
tions that make use of eye movements, with the assumption that
there may be a significant advantage to classification models that
employ a rich characterization of temporal dynamics.
Please cite this article as: J.F.G. Boisvert, N.D.B. Bruce, Predicting task
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4.7. Feature combinations

Performance for binary task classification is important to the
overall interpretation of results as this provides a sense of simi-
larity among behavioural observations among each pair of tasks. It
is also evident in some of the preceding discussion within this
section, that some important observations concerning relative
importance of specific features or partitioning of data are possible
only with a granularity of task prediction results that includes
different subsets of features. This includes determining the degree
of redundancy in information captured by different types of fea-
tures. For example, relatively small gains are observed in com-
bining LM and HoG features compared to their independent pre-
diction accuracies. Slightly larger gains result from combining
spatial densities and fixated features, and even larger gains in
combining saccade amplitudes with spatial density and fixated
features. These observations largely fit with a priori intuition
concerning the overlap in information represented among such
features. However, such analysis also helps to support or rule out
other suspicions concerning the nature of task differences. For
example, one might posit that feature differences at fixation are
due primarily to bias in the spatial density profile of fixations that
varies with task in combination with bias in how images are
composed (framed and targeted by the photographer). However,
the improvement seen in combining these features seems to deny
the possibility that feature level differences are entirely spatial in
their impetus. It is important therefore to note the methodological
value of decomposition of both features, and task pairing in pre-
diction to derive a deeper understanding of task relatedness.
5. Discussion

We have considered the extent to which relatively general task
definitions, such as free viewing vs. search for objects may be
distinguished on the basis of either the spatial density profile of
fixations, features at fixation, scene structure or fixation dynamics.
There are a variety of interesting observations that emerge from
the classification experiments that include establishing the rela-
tive importance of different features in discriminating tasks, and
highlighting important methodological considerations in how
analysis by classification may be conducted.
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While free viewing and saliency viewing produce gaze derived
statistics that are quite similar, these tasks are distinguished from
object search with relative ease. Employing methods that place an
emphasis on feature importance allows for subtle differences
between tasks to be identified for more careful focused examina-
tion. For example, the relative importance of saccade amplitudes
for the first several fixations in free viewing and saliency viewing
may not be as readily observable outside of analysis of feature
importance. In this view, some of the value of task prediction may
reside in the capacity to test a large number of features in their
value for task discrimination to identify targets for subsequent
analysis using alternative methods. In this view, there is a role for
task discrimination as a means for high-throughput screening for
important feature dimensions.

While a task description may carry a relatively clear intent or
definition, the associated neural and behavioural mechanisms that
any task definition elicits may be relatively obscured in compar-
ison. With that said, there is reason to be optimistic that a further
proliferation of studies focused on eye movements including a
larger variety of task definitions will help to clarify this relation-
ship. This will allow for a stronger functional characterization of
the nature of different tasks at various levels of abstraction (high-
level or specific), while also distilling out the distinct associated
neural or behavioural mechanisms that are recruited for particular
tasks. (For a different set of methods towards this goal, see also
[6,39]). Task prediction accuracies may be of value in determining
task similarity, however, the specific features that are most dis-
criminative in separating tasks may also provide important clues
concerning how tasks are related. Finally, it is important to note
that there are certain limitations to this type analysis and these are
discussed in greater detail in Section 5.2.

On the balance of evidence from studies that aim to predict
task from eye movements, there is evidently support for Yarbus'
assertions concerning the importance of task in determining gaze
behaviour, and recent efforts have demonstrated that fixation data
may successfully predict task. However, analysis that emphasizes
feature importance is necessary to understand specific factors that
Please cite this article as: J.F.G. Boisvert, N.D.B. Bruce, Predicting task
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distinguish tasks, and also to understand which features are of
universal value vs. those that are discriminative only for specific
task pairings. This consideration has relevance to prior work in
task prediction, and this consideration is discussed further in the
remainder of this section.

5.1. Fixation dynamics, covert attention and data partitioning

There is a clear benefit for the tasks examined in this paper to
considering fixation dynamics in conjunction with fixation den-
sities or local image features. While viewing a scene is marked by a
sequential scanpath that results from interaction between overt
and covert attention mechanisms, analysis based on density alone
fails to capture such temporal dynamics. This is evident in the
work of Haji-Abolhassani and Clark [22], in which accuracy in task
prediction exceeds prior efforts that consider primarily static
spatial characteristics [1,29]. Moreover, modeling the problem in
the framework of a Hidden Markov Model (HMM) allows the
problem to be cast in terms of gaze points as observations, with
the focus of attention as a hidden variable. This has the benefit of
providing an explicit mechanism to relate overt attention to latent
covert attention, and this framing of the problem also has appar-
ent additional value in characterizing factors that distinguish
different tasks.

One important property of the HMM characterization used by
Haji-Abolhassani and Clark [22] is in modeling the relationship
between observed gaze locations and attended locations. That a
face is not fixated explicitly does not imply that it was not atten-
ded. This non-locality within the model allows for a richer con-
struct for capturing the role of content not directly at the center of
gaze in task prediction. In the characterization presented in this
paper, there is some non-locality to prediction in that fixation
density extends outside of the centers of gaze, and image char-
acteristics rely on features or regions that correspond to a region
surrounding the center of gaze. This is more restrictive than the
model of Haji-Abolhassani and Clark [22], but does allow for some
non-locality of spatial and structural information. It is also the
from eye movements: On the importance of spatial distribution,
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case, that the HMM formalism considered by Haji-Abolhassani and
Clark [22] requires stronger explicit definition of stimulus char-
acteristics such as target position, or foci of interest as gleaned
from fixation clusters.

The role over overlap among images in training/testing is
highly relevant to the interpretation of results from prior studies
that consider the Greene et al. [19] data. In the case of spatial
densities, the small image set and overlap among training and
testing data implies that information on spatial position of content
that is image specific may be leveraged by a classifier that con-
siders only spatial density. For the HMM based analysis of Haji-
Abolhassani and Clark [22], this is also true as clusters of fixations,
or labeled focal points within images are critical to the statistical
representation in the affinity between observed fixation positions
and these key locations. In contrast to general task dependent
differences in center bias, or low level structure (e.g. edges) at
fixation, both of these schemes present the possibility that image
specific positions of high level features (e.g. objects) are a strong
factor in boundaries drawn by a classifier. That is, in contrast to
differences in dynamics, or general differences in spatial profile,
success in delineating tasks may be relatively specific to known
object positions for a known set of images.

To examine this point further, we consider differences in nor-
malized fixation densities across two different tasks (Memory and
People). The choice of this pair is based on the relatively small
degree of confusion that exists between this pairing in prior
classification studies. Spatial fixation densities are produced as
discussed in the methods section, and subsequently the density
maps for each image are averaged within task. This implies a
density that is based on an average of 4 observer's viewing pat-
terns. Fig. 10 shows the difference between densities associated
with the Memory and People tasks, such that red regions indicate
regions for which observed density is higher in the People task,
and blue regions those for which density is higher in the Memory
task. The visualization in Fig. 10 seems to leave little doubt that
there are task dependent differences that are specific to certain
Fig. 10. A visualization of differential fixation density between the People and Memory ta
People task, and blue the Memory task. (For interpretation of the references to colour in
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types of image content. One might surmise that the failure to
classify tasks above chance in the study of Greene et al. [19] is due
primarily to a lack of features that capture positions of specific
relevant objects within the images considered. In contrast, alter-
native classification efforts [1,29,22] carry a relatively strong
encoding of this type of information, even if not explicit. Although
the analysis of Greene et al. [19] includes a measure of dwell time
corresponding to specific object categories, the correspondence to
discrete localized regions, and non-spatial nature of this measure
may be limiting. Moreover, it is possible that measuring dwell time
rather than instances of fixations might limit the discriminative
value of this type of feature. As a whole, the observations con-
cerning the importance of specific object positions suggests that
models capable of identifying and localization a large array of
object types, or patterns of semantic relevance might achieve a
much higher degree of success for task prediction given novel
images or scenarios.

5.2. What can task prediction reveal about vision?

In recent years, studies involving task prediction have focused
principally on prediction accuracies, and on confirming Yarbus'
assertions concerning task predictability. In taking a more com-
prehensive account of task predictability, it is important to con-
sider what studies involving task prediction are able to convey
about human vision. To this end, we discuss a few types of analysis
for which task prediction may be a valuable tool while also
highlighting some of the associated limitations:

1. Task similarity: It is evident that binary classification accuracies
might be used as a measuring stick for task similarity, and that
the specific types of features that are discriminative for different
task pairings may aid in this determination. One can imagine
establishing an embedding (or topology) of task relatedness
based on a large array of tasks, and suitably chosen features.
However, failure to observe differences among tasks may be due
sks. Red regions correspond to those for which a higher density is observed with the
this figure caption, the reader is referred to the web version of this paper.)
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to the set of features chosen. Moreover, the distances among
task categories or ease of discriminating between tasks is also
dependent on choosing the right set of features. This does not
imply that the goal of establishing a representation of task space
should be abandoned, but does call for caution in how results
are interpreted. Pushing the ceiling on accuracies achieved in
task prediction will help to establish the most relevant set of
features. There are also alternative sources of data, such as brain
imaging data, that may provide an adjunct source of statistics
for considering measures of similarity and as a useful basis for
comparison to task prediction results.

2. Discriminative features: One advantage of analysis by task pre-
diction that is exposed in the results presented in this paper, is
the capacity to identify subtle factors that delineate different
tasks. As a tool for identifying relevant features, this provides
the capacity to identify relevant experimental factors that may
otherwise be ignored. This also affords the potential to probe a
potentially large set of features in their capacity to discriminate
between tasks, and to draw out factors of greatest significance.
6. Conclusions

In this paper, we have conducted a number of tests to deter-
mine the extent to which an observer's task may be determined
based on eye tracking data. This has been carried out with a focus
on the value of different factors such as spatial distribution of
fixations, the nature of content at fixations, or fixation dynamics.
This analysis is accompanied by discussion of methodological
considerations important to interpreting results derived from task
prediction. This provides a number of important observations
relevant to the specific tasks considered as well as prior studies
involving task prediction, and to methods associated with task
prediction:

1. Unlike alternative studies involving task classification, we
include a heavy emphasis on feature importance. This provides
an indication of the relative importance of spatial fixation
density, local image structure, holistic scene structure and
fixation dynamics in distinguishing between different tasks. We
observe that spatial density, and timing and length of saccades
are important factors for classification. We also present evi-
dence that for finer task distinctions, specific information about
spatial positions of important objects may be relatively impor-
tant to defining task differences.

2. While previous work has included measures of fixation density,
saccade statistics and image salience, the current study marks
the first effort to examine the value of local image content at
fixated locations in predicting task for a Yarbus style paradigm.
Results indicate that fixated content is of significant value in
delineating some tasks, even if less important than other fac-
tors. While one might expect some bias in fixated structure due
to differences in spatial profile, the combined strength of spatial
fixation densities and structure of content at fixation indicates
that fixated features carry diagnostic information that is inde-
pendent of spatial position.

3. We have demonstrated that the means of partitioning experi-
mental data is a very important factor in interpreting outcomes
from task prediction. In particular, the value of spatial densities
may be relatively specific to the content of known images for
some task pairings, and less so for others. This also presents the
possibility that success in some prior task prediction studies
may be due to implicit representation of relatively high-level
contextual, or object specific factors within the spatial density
associated with a smaller set of known images.
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4. The analysis presented in this paper is distinguished from prior
efforts in the size of the data set, the task definitions considered,
and methods that are used. Differences in gaze behaviour
depend on both task definitions, and image content. It is our
hope that as further research efforts in this domain continue to
cover a more diverse range of task/data combinations that
stronger conclusions may be possible concerning task related-
ness, important principles, and underlying mechanisms.

5. Strategies that are successful in task prediction are also of value
in application domains that include human-machine interac-
tion, perceptual user interfaces and assistive technology for
physiological or neurological conditions. This paper contributes
to the growing body of strategies for task prediction towards
supporting this goal. In particular, models that include a strong
representation of both dynamics, and recognition of patterns
with semantic relevance (e.g. objects) may be expected to be
especially capable for these types of applications.

As a whole, this work contributes to the growing body of efforts
that support Yarbus' assertions concerning fixation patterns. On
the basis of the results presented, we are also optimistic that
future efforts that emphasize task relevance will be fruitful in
understanding task-gaze interaction. Further proliferation of
efforts of this variety may also provide a window into the bigger
picture of generalized task relatedness, task-data interaction and
individual and general differences in gaze-task relationships.
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