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a b s t r a c t

In this paper, we examine the problem of learning sparse representations of visual patterns in the
context of artificial and biological vision systems. There are a myriad of strategies for sparse coding that
often result in similar feature properties for the learned feature set. Typically this results in a bank of
Gabor-like or edge filters that are sensitive to a range of distinct angular and radial frequencies. The
theory and experimentation that is presented in this paper serves to provide a better understanding of a
number of specific properties related to low-level feature learning. This includes close examination of
the role of phase pairing in complex cells, the role of depth information and its relationship to variation
of intensity and chroma, and deriving hybrid features that borrow from both analytic forms and
statistical methods. Together, these specific examples provide context for more general discussion of
effective strategies for feature learning. In particular, we make the case that imposing additional
constraints on mechanisms for feature learning inspired by biological vision systems can be useful in
guiding constrained optimization towards convergence, or specific desirable computational properties
for representation of visual input in artificial vision systems.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Following seminal efforts linking properties of cells in visual
cortex to strategies that imply efficient encoding of image statistics
[16,37,40], there has been significant interest in understanding the
relationship between natural image statistics and properties of
cells in visual cortex. This has included deeper examination of
more specific factors in the neural encoding of image content,
including spatiotemporal patterns [14], color and stereo channels
[22], the role of complex cells [23] and topographical arrangement
of units [25].

Recently, there has also been renewed interest in representa-
tion of image content through neural networks, with sparsity [33]
and autoencoders [21,20] being important driving principles
behind unsupervised approaches to feature learning. Such efforts
have also shown success in producing feature hierarchies [45,15]
suitable for specific applications in artificial vision.

There have been significant advances in strategies for encoding
natural image statistics and useful analysis of learned feature rep-
3resentations. However, there remains a need for targeted efforts
towards understanding the nuances of representing visual input, and
the impetus for observations that appear in psychophysical, brain

imaging and single-cell recording studies. More precisely, there is a
trade-off between the generality of features that may be derived
through constrained optimization, and the specificity of character-
istics expressed in learned features. For example, one might observe
that a linear transformation that provides a sparse representation of
image patches, results in a scheme akin to convolutionwith a bank of
edge filters [35,3]. Alternatively, one might produce a very specific
non-linear model of the temporal dynamics of cells that conforms to
a quantitative measure of optimality in coding efficiency or informa-
tion transmission [4,19]. Deriving a putative neural representation
that subscribes to these more specific criteria typically requires
fitting parameters associated with a more constrained definition on
the space of computational operations carried out by a neuron.
Efforts that generalize more specific models, or add specificity to
coarse-grained models are therefore helpful in providing additional
coverage intermediate to the preceding examples.

In this paper, we examine a number of specific factors in sparse
coding of image statistics with an emphasis on V1-like features.
This is carried out with the goal of shifting the level of specificity
one step from more general sparse coding of image patches to
include additional constraints or auxiliary data. Facets of early
visual encoding of image statistics that are considered in this
paper are as follows:

1. Contrast polarity: Two hallmarks of complex cells in primary
visual cortex are invariance to phase [8], and to polarity [43].
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While phase invariance has received significant consideration in
the context of feature learning (e.g. convolutional networks
[30,28]), phase polarity and anti-phase pairing have received
relatively less attention. In this work, we discuss both shift
invariance, and polarity invariance in their relation to sparsity, as
well as advantages for phase variation in the context of object
recognition. We also explore a feature learning strategy pre-
mised on explicit phase pairing of features with sparsity as an
optimization criterion. The structure of this pairing is premised
on the observed properties of complex cells in early visual
cortex, with initialization of features configured to promote
anti-phase pairing. This includes demonstration of feature learn-
ing wherein phase signatures of features are crucial to their
diversity, and a demonstration of superior recognition perfor-
mance on a standard dataset for visual feature learning (STL-10)
[9]. Finally, we discuss the broader implications of this line of
investigation in the context of hierarchical feature learning, and
general properties of neural architectures.

2. The role of depth: One challenging area in examining encoding of
image statistics lies in the representation of depth of content in
the scene in conjunction with intensity gradients and chromatic
contrast. Given that image content that allows for determination
of depth via stereopsis is sparse in physical space, dense depth
computation presumably relies on coordination between differ-
ent areas of visual cortex allowing broader representations of
image content to refine the representation among units within
earlier stages in visual processing [12]. This is akin to resolving
ambiguity in the aperture problem by virtue of the role of higher
visual areas involved in motion processing [2]. In lieu of relying
on a complex representation of this form, we instead use dense
depth information directly, as a surrogate for the representation
that might be afforded by involvement of later stages of visual
information processing and a more sophisticated characterization
of depth and scene composition. Cameras that provide direct
access to depth information present the possibility to examine
the relationship between intensity variation, chromatic contrast
and depth information directly. The goal of this exercise is to
demonstrate implications of dependencies or redundancy across
different sources of input, and the broader implications for visual
representation.

3. Gabor filters and image statistics: Gabor filters are a common
alternative model of cells in early visual cortex, and exist in
parallel to features derived through statistical methods in
computational models of human vision, machine vision and
application domains. Some of the advantages of Gabor filters lie
in the precise control over spectral coverage and sampling, and
avoidance of the excessive dimensionality that even relatively
modest sized image patches entail in feature learning. Many
statistical methods for feature learning may be relatively
intractable beyond a certain size of input, implying a limit on
the band of frequencies that may be represented. For this
reason, we consider a hybrid representation wherein the initial
representation comprised of responses from a Gabor filter bank
are refined according to statistical methods to examine impli-
cations for efficient coding spanning a greater spectral range
than raw image patches allow. This discussion also considers
the relationship between the structure of Gabor filters, log-
Gabor filters and image statistics with respect to principles for
information transmission and efficiency of representation.

All of these separate lines of investigation address a common
thread: Given the growth in dimensionality that accompanies
consideration of larger and more complex input patterns, there
are inherent limits on what can be learned in an unconstrained
manner. Strategies for dealing with this complexity may come in
the form of imposing additional constraints on structure for

learned features based on what is already known of neural
information processing in visual cortex.

In the remainder of the paper, each of these points is addressed
in turn, and experimental methods and supporting results are
included as a subset of each section. Section 2 considers the role of
contrast polarity, and introduces a strategy for feature learning
that results in anti-phase pairing of filters. This also includes
analysis of their properties, and efficacy in a discriminative
context. Following this, Section 3 employs combined RGB and
depth channels to examine properties of image coding tied to
traditional factors such as intensity and chromatic variation in the
presence of depth. Section 4 discusses the suitability of Gabor
filters for visual representation in light of natural image statistics,
and examines hybrid analytic-statistical representations and the
properties of associated features. Finally, the broader implications
of this analysis are discussed in Section 5 and important results
summarized in Section 6.

2. Contrast polarity

Many strategies for unsupervised feature learning have been
proposed, that each differ in the precise criteria for deriving
optimal features. In some cases, this entails careful selection of
multiple hyperparameters or number of desired features (size of
basis). That said, many strategies for early feature learning,
including variants of ICA [26], vector quantization [18], or deep
learning [31] result in similar features for early feature representa-
tion comprised of Gabor-like cells reminiscent of simple cells
appearing in early visual cortical areas of primates in spite of the
range of parameters chosen.

In this section we outline an optimization strategy for feature
learning, in which the optimization criterion is based on explicit
pairing of filters, which are combined by way of the sum of
squared responses. This is a configuration that is inspired by the
apparent insensitivity to contrast polarity among complex cells
[43]. In particular, we demonstrate that imposing this basic
structure on feature learning affords a mechanism for implicitly
promoting anti-phase pairing in feature learning characteristic of
models of complex cells.

The precise computational details of this strategy, and demon-
stration of the benefits of deriving features in this manner are
explored in the sections that follow. In Section 2.1.1, we discuss the
precise computational details of Paired Projection Pursuit. This is
followed by a qualitative examination of learned feature properties
and description of the methodology for quantitative evaluation of
learned features in Section 2.2.1. Comparative results for quanti-
tative evaluation are provided in Section 2.2.2 along with some of
the broader implications of this analysis.

2.1. Methods

Quadrature pairing appears prominently in the computational
vision literature from energy coding through complex cells [1], to
stereo vision [34] or models of motion perception [38]. Statistical
approaches have also shown success in producing units with
properties similar to complex cells by way of a 2-layer sparse
coding strategy [24].

The typical structure of quadrature paired filters in computa-
tional models of early visual cortex, often comes in the form of
combining responses of rectified Gabor filters, with a phase offset of
π/2. Desirable properties of such a configuration include phase
invariance, and some limited shift invariance [34]. Shift invariance
may also be achieved through careful selection in sharing of
weights between putative cortical layers, as is the case for convolu-
tional networks [30]. A secondary property of complex cells comes

N.D.B. Bruce et al. / Neurocomputing 171 (2016) 1085–10981086



in the form of invariance to contrast polarity [43]. It is of interest to
examine implications of this invariance from an empirical stand-
point to understand the impact of encouraging subtle differences in
feature learning within the underlying cortical representation, and
for discriminative purposes.

In this work, we combined the assumed structure of phase
pairing for complex cells, with a strategy for feature learning. This
is achieved in the form of constrained optimization, subject to
explicit pairing of filters, sparse coding, and constraints that force
both population level sparsity and dispersal. This strategy is
referred to as Paired Projection Pursuit (PPP) in the section that
follows. Feature learning results presented in this section are
based on the 100,000 unlabeled images from the STL-10 database
[9] and correspond to 1600 features. These choices were made to
produce results comparable to those presented by Coates et al. [9]
and Ngiam et al. [33].

2.1.1. Paired projection pursuit
One strategy for feature learning that is relatively devoid of the

need careful tuning of parameters, or other variables associated
with optimization is the proposal of sparse filtering [33] which
emphasizes population sparsity, lifetime sparsity and dispersal in
its constraints. In the current work, the mechanics of optimization
at the level of individual cells follows the formalism presented for
sparse filtering, with the additional explicit constraint of paired
filters combined through a sum of squares.

Filter pairs are given by: f ðiÞLj ¼wT
Lj
xðiÞ and f ðiÞRj

¼wT
Rj
xðiÞ where xðiÞ

corresponds to input pattern i (a vectorized image patch), and wLj
and wRj

correspond to the two separate linear filter pairs that
share index j.

Initial weights are assigned randomly to all L cells, and R cells
are assigned weights such that wRj

¼ αη�ð1�αÞwLj where η is an
independent set of randomly selected weights of the same size as
wLj . This scheme is to promote anti-phase pairing at the initializa-
tion stage while also breaking symmetry in gradients at the
optimization stage between corresponding L and R pairings.

Linear filter components are subject to an L2-norm both across
the cell population, and across the sample population

~f Lj ¼ f Lj=J f Lj J2 and ~f Rj
¼ f Rj

=J f Rj
J2 ð1Þ

f̂
ðiÞ
L ¼ f ðiÞL =J f ðiÞL J2 and f̂

ðiÞ
R ¼ f ðiÞR =J f ðiÞR J2 ð2Þ

This normalization promotes both dispersal and lifetime spar-
sity of cells.

Finally, complex cell structure is defined according to the
squared sum of normalized L and R pairs filter components

f ðiÞP ¼ ðf̂ ðiÞL Þ2þðf̂ ðiÞR Þ2
~f Pj

¼ f Pj
=J f Pj J2

f̂
ðiÞ
P ¼ f ðiÞP =J f ðiÞP J2

This also includes the same stages of L2 normalization (on the
sum of squared outputs) that impact the linear stage, ensuring
dispersal and lifetime sparsity among complex cells.

Finally, optimization is subject to the expression

minimize
XN

i ¼ 1

J f̂
ðiÞ
P J1 ð3Þ

which employs the L1-norm term typical of constrained optimiza-
tion for sparse coding. This optimization problem is solved by way
of standard L-BFGS optimization.

Dispersal and population sparsity at the level of individual L
and R cells forces both dispersion of activity across cells, and
across the population ensuring that both L and R cells are active

avoiding the trivial solution where one of L or R is inactive in
pairing. The constrained minimization then forces pairing that
results in dispersal and population sparsity for both individual
filters and paired filters.

2.2. Results

To understand implications of anti-phase pairing, it is impor-
tant to consider both the properties of filters that arise from
optimization, and the expressiveness of such filters. The first of
these is examined in Section 2.2.1 in observing typical profiles for
learned paired filters, including their spatial profiles, and power
and phase spectra. In Section 2.2.2 we further assess the quality of
the resulting features in the context of an object classification task.

2.2.1. Properties of paired filters
Fig. 1 demonstrates the spatial profile of learned paired filters.

Note that the learned filters carry a Gabor-like profile, with an
approximately inverted profile between associated filter pairs. It is
also of interest that some features consist of very low frequency
gradients, which are uncommon in more typical models of sparse
coding (see e.g. Fig. 3).

Fig. 2 demonstrates typical filter profiles in the spectral dom-
ain, consisting of the power spectrum (top), and phase spectrum
(bottom) for a number of paired filters. Note that while there is
significant similarity for within pair spectral coverage, there is
significant diversity in phase spectra, and this contributes signifi-
cantly to the diversity of features. This also reveals some of the
subtle feature properties that may not be immediately evident in
examining the spatial profile of the filters alone.

2.2.2. Quantitative evaluation
To assess the efficacy of paired sparse filtering in producing a

useful representation for discrimination tasks, we have applied
paired sparse filtering to data from the STL-10 database [9]
compared against alternative representations under circumstances
of few labeled examples. This data set, and methodology is
designed to place greater emphasis on scalability and robustness
of the learned feature set. The STL-10 dataset is a subset of CIFAR-
10 and is designed such that there are very many unlabeled
samples, relative to a small set of labeled examples. For this
reason, this is a useful evaluation set for examining the richness
of the resulting feature set, and the ability to generalize. Labels
correspond to 10 classes (airplane, bird, car, cat, deer, dog, horse,
monkey, ship, truck) with 500 training images per class. An
additional 100,000 unlabeled images from a broader set of classes
is available for feature learning. Paired filters are learned from
random patches selected from the unlabeled image set. Subse-
quently, the 500 class specific training images are used to train a
classifier based on the underlying feature set, and an additional
800 images per class used for testing. As the feature learning is
based on the unlabeled feature set, this provides a good sense of
the generalization or discriminative information captured by the
paired filter ensemble. Performance evaluation follows the proto-
col established by Coates et al. [9] and performance values are
based on 1600 features across all feature types.

Classification performance for various types of features includ-
ing the representation appearing in this paper (Paired Filtering)
demonstrates the apparent effectiveness of sparse filtering with
explicit pairing of filters in a formation akin to complex cells
relative to alternative linear filtering strategies (Table 1).

There are a number of interesting observations that may be
made regarding the learned paired filters. First, the degree of
structure and diversity in the phase spectra is of significant
interest given that phase is arguably under-represented in the

N.D.B. Bruce et al. / Neurocomputing 171 (2016) 1085–1098 1087



Fig. 1. Examples of the spatial profiles of coupled linear filters in paired filtering. Each set of two reveals the approximately anti-phase spatial profiles. Paired filter output is a
result of the sum of squares of the two anti-phase outputs. Notice that phase pairing is preserved subject to iterative learning of edge selective filters from random and
approximate anti-phase initialization.
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Fig. 2. Examples of filter properties in the frequency domain. For each grouping of 4: Amplitude of linear pairs (top row each group) and phase spectra (bottom pair in each
group). Note that similar amplitude spectra appear, but diversity in representing image content may be attributed to the variety and complex phase spectra associated with
the learned paired features. Anti-phase pairing is also evident in the coupling of pairs.

N.D.B. Bruce et al. / Neurocomputing 171 (2016) 1085–1098 1089



body of experiments that model early visual representation
through linear models, or in assuming sparse coding. Discrimina-
tion results suggest that phase may be a relatively important
consideration in visual encoding, outside of the desirable proper-
ties of phase or shift invariance. There are also additional char-
acteristics in scene analysis and recognition tasks that may benefit
from relative invariance to phase. This may include the impact of
lighting, or context of an object in defining figure ground relation-
ships and border ownership. It is also worth noting that invariance
to contrast polarity presents the possibility of misclassifying
instances of objects that might be successfully discriminated in
the absence of such contrast polarity invariance. The results of
these experiments suggest that any such deficits are outweighed
by the benefits that this invariance breeds, and is a possible
explanation for such computational structure featuring promi-
nently in biological vision systems.

In addition, this formalism suggests a more general strategy for
feature learning, either within a single layer of features, or as part
of a hierarchy of increasingly complex features. More specifically,
while imposing additional structure on a learning strategy may
limit the space of representations that can be produced, it may
also facilitate convergence on a set of features that would not
result from optimization without a defined relationship among
features, in limiting the breadth of the solution space for con-
strained optimization.

3. Depth

In this section we present a relatively simplistic set of experi-
ments with largely qualitative results. These address the relation-
ship between depth and spatial and chromatic patterns in natural
images. As discussed in the introduction, the relationship between
depth encoding among features (e.g. via stereopsis) and local
variation of intensity and chroma presents a challenging case to

study given the relative spatial sparsity of binocular depth cues,
and presumed involvement of higher visual areas in this repre-
sentation [12]. We therefore seek to examine such interaction at a
higher level of abstraction, in the presence of absolute depth
values afforded by RGB-D cameras. In this section, we describe
methods associated with this analysis, and observations concern-
ing dependencies between explicit measures of depth, and local
intensity and chroma.

3.1. Methods

The following analysis employs a popular method for sparse
coding consisting of independent component analysis (ICA) using
the extended infomax method [32]. This is a commonly used
strategy for learning early visual feature representations based on
large samples of input patches sampled from an ensemble of
images. In this case, 600 images from the NUS-3D dataset [29] are
considered, with 100 local patches sampled from each image. This
dataset also includes a channel representing absolute depth from
raw depth data from a Microsoft Kinect sensor.

We are interested specifically in dependencies between differ-
ent input channels, and general characteristics of filters tuned to
either standard RGB input, or combined RGB and depth input. A
goal of this is to assess the degree of variation in the base edge
filter representation in the presence of auxiliary depth informa-
tion. Results corresponding to such analysis are presented in the
section that follows.

3.2. Results

In this section, we show learned feature representations corre-
sponding to either RGB input patches in isolation, or 4-D input
patches consisting of RGB and depth channels. As discussed, filters are
derived using extended infomax ICA. Fig. 4 reveals typical examples
of spatial profiles of cells corresponding to randomly selected input
patches (21�21) across 600 images. These carry the typical char-
acteristics of Gabor-like filters, and color-opponency that approxi-
mately corresponds to red–green and blue–yellow opponent cells.
Additional characteristics that are introduced in considering depth
are revealed in the profiles presented in Fig. 5. In this case, each unit
is shown as a pair corresponding to the RGB and depth components
respectively. Note that the contrast of each of these is stretched to
span the entire range of available RGB levels (8-bit). In terms of
absolute contrast, the channels that appear to be noisier have a
narrower dynamic range. There are a number of observations that can
be made at an anecdotal level with respect to coupling of intensity,

Table 1
STL-10 object classification performance.

Method Accuracy

Raw Pixels [9] 31.870.63%
ICA (Complete) [33] 48.071.47%
K-means (Triangle) [9] 51.571.73%
Random weight baseline [33] 50.271.08%
Sparse filtering [33] 53.570.53%
Paired filtering 57.970.56%

Fig. 3. Examples of paired filters derived from the STL-10 dataset. Shown are both achromatic and chromatic pairings for the small colored patches similar to output from
other STL-10 evaluations, but with anti-phase characteristics in intensity and chroma. In chroma, this is reminiscent of double-opponent coupling among cells in early visual
cortex. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 4. Sample features derived through infomax ICA using the RGB channel only as a basis for comparing with combined RGB and depth information. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this paper.)
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chroma and depth in considering properties of these units. First,
encoding of depth information is primarily in the form of low
frequency gradients. Given that this is a product of a representation
that has only a weak connection to cortical representation, this does
not necessarily carry any significant implications for cortical depth
representation. That said, some of the additional properties of this
representation are perhaps of greater interest. For example, there is
relatively little coupling between intensity gradients, and depth
gradients suggesting that these sources of information are relatively
independent in their statistics. Secondly, there does appear to be
some coupling between chromatic, and depth input. This is especially

true for red–green channels, and for lower frequency chromatic
gradients. This observation is consistent with the surprisingly large
degree of pairing of chroma and disparity tuning for cells in V2 and
more specifically, the existence of color coding, combined color and
disparity, and disparity coding [44,41]. As a whole, this is also in line
with claims of potentially distinct representations of more continuous
depth gradients for surfaces and depth gradients at physical bound-
aries [44] respectively.

An additional sub-population of units is also depicted in Fig. 6.
These units are reminiscent of cells with end-stopping characteristics
[48] or capturing local curvature [13], responding to localized

Fig. 5. Features derived through infomax ICA when both RGB and depth channels are considered together. Note that the absolute range of values is scaled to the full intensity
range for greater visibility. A noisy appearance in one of the channels (color or depth) corresponds to filters with a relatively lower magnitude of weights. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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gradients with a specific spatial extent. For the population associated
with depth information, this type of profile appears in association
with approximately 5% of units, with a figure closer to 2% for the pure
RGB input. While this again is largely anecdotal, this does bring to
light an additional consideration: Given input patterns with a specific
scope (e.g. local RGB patches only), does a sparse encoding of such
patterns change appreciably in the presence of auxiliary information?
For example, additional visual encoding of input stimuli by units
among higher visual areas, presence of stereo input, temporally
varying input or any other sources of variation may have some
impact on units tied to a representation that includes only a more
limited subset of the complete set of input features. This calls for
some caution in using a relatively narrow set of input patterns, purely
linear filters, or limited receptive field sizes to compare hypothesized
principles underlying visual encoding of input patterns. In particular,
this serves as an example that feature correspondence to human data
may be altered by the presence of additional input channels, or
encompassing computation typical of additional functional regions in
visual cortex. From a feature learning perspective, the above con-
sideration is also important. Concatenated sets of features derived
from different input channels and learned independently may differ
from those that arise when all input channels are treated in concert.
This is evidently due in part to correlation or redundancies expressed
across different input channels, but also in a more obfuscated fashion,
on the impact on path to convergence for constrained optimization in
the presence or absence of different subsets of input channels.

4. Gabor filters

Gabor filters feature heavily both in computational models of
vision, and in models of human vision. Features used in imple-
mented computational vision systems range from those that are
heavily driven by statistical or empirical factors (as in the prior
sections), versus those that assume components with an analytic
form such as Gabor filters. The latter of these categories carries
some very useful properties including a greater ability to char-
acterize behavior of individual cells, and also control over their
properties as an ensemble including elements such as spectral
coverage and effective range of frequencies.

In light of this, within this section we examine Gabor filters with
specific emphasis on considerations that are typically more perva-
sive in statistically driven feature learning. This includes relating
properties of Gabor filters to observed bias in natural image
statistics. Moreover, we also propose a hybrid approach in which
a basis of Gabor filters is modified according to statistical criteria for
optimality, resulting in a feature set that draws advantages from the

two distinct (analytic or statistical) strategies. These filters are
referred to as Hybrid analytic-statistical filters in what follows.

4.1. Methods

Many principles that motivate putative models for the encod-
ing of sensory signals draw their inspiration from information
theoretic considerations. This includes principles such as max-
imizing entropy [3], sparsity [46,36], or information transmission
[39]. It is therefore sensible to also consider these properties
within Gabor filters, at the level of individual units, and among an
ensemble of cells.

In considering individual units, Gabor filters have a profile that
consists of an oriented sinusoidal pattern modulated by a local
Gaussian envelope limiting the spatial extent. From an information
theoretic standpoint, there is one issue that might be raised
immediately concerning this structure. Natural images are often
characterized as exhibiting a 1=f α dropoff as a function of
frequency [16]. In employing a profile that consists of a transfer
function with a Gaussian profile on a linear scale, this implies that
any Gabor filter will tend to be driven more by lower frequency
patterns given the higher prevalence of low frequency intensity
variation in natural images. A corollary of this observation, is that
the mutual information between input patterns and cell output is
sub-optimal, as is the entropy of the output distribution produced
by a cell. Log-Gabor filters present an alternative to Gabor filters
with a Gaussian transfer function on a log-frequency scale. For log-
Gabor filters, it is evident that the shape of the transfer function
will help to produce a relatively even response to input patterns
given the prevalence of frequencies expressed across different
frequency bands in natural images. The transfer function (fre-
quency domain) of a log-Gabor filter is given by

GðwÞ ¼ e�ðlog ðw=w0Þ2Þ=2 log ðk=w0Þ2

where w0 is the center frequency, and k=w0 determines the filter
bandwidth.

In moving from individual cells to an ensemble of cells, an
additional consideration is selecting parameters that result in even
spectral coverage by the complete filter set. This problem has been
addressed for both standard Gabor filters [10,11], and also for
log-Gabor filters [27]. With that said, the distribution of frequencies
for natural image statistics is also anisotropic with respect to both
angular and radial frequency (orientation and scale). For this reason,
at the level of an ensemble of cells the optimality called for by
information theoretic considerations also dictates uneven weighting
across cells with respect to angular and radial frequencies.

Fig. 6. A depiction of a subpopulation of units from the RGB-D condition. There is some anecdotal evidence in examining the output of a greater incidence of units of this
variety. Response profiles of this type carry properties of end-stopping and encoding curvature.
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One significant challenge for purely statistical methods for visual
feature learning, or examining possible ties to cortical computation
lies in the combinatorics associated with the dimensionality of input
(e.g. patch size). Many strategies for statistical feature learning are
limited in the dimensionality of input that can be considered either in
complexity as a function of dimensionality, or convergence on
meaningful features. Analytic models on the other hand allow for
precise specification of the nature of cells and their properties
including control over spectral coverage and bandwidth. In what
follows, we therefore consider a statistically derived basis that
assumes the response of Gabor filters for input. The goal of this is
to produce an alternative means to derive a feature representation
from image statistics that carries advantages of both statistical and
analytic approaches to defining early visual features. This also
presents an alternative vantage point for considering the relation to
computation in early visual cortex in humans.

4.1.1. Hybrid analytic-statistical filters
There are numerous different algorithms suitable for learning

sparse codes including independent component analysis (ICA) or
those for which sparsity is promoted through regularization (e.g.
minimizing the L1 norm). In considering algorithms for ICA, there are

significant differences in the extent to which algorithms scale as a
function of the dimensionality of input data. In building on filter
outputs rather than raw pixels one brings the possibility of reducing
the initial dimensionality of the input while allowing for lower spatial
frequency patterns with a larger spatial extent to be considered.

In this line of experimentation, images from the UPenn Natural
Image Database [42] were used. 400 individual images were selected
across the dataset for as much variety as possible, and images
converted to grayscale. For each image, 500 samples of output from
the 36 log-Gabor filters were recorded for a total of 200,000 36-
dimensional data vectors. This data set then formed the input to
subsequent projection pursuit via ICA to minimize statistical depen-
dency across individual filters. As mentioned earlier in this section, it
is worth noting that if standard Gabor filters were used in place of
log-Gabor filters, this guarantees some loss in the degree of informa-
tion (or entropy) captured by the filter ensemble. For standard Gabor
filters, units are driven disproportionately by lower frequency pat-
terns within the effective frequency band for a given filter. It is not
possible in practice to recover this compressive loss in resolution for
higher frequencies via ICA.

Given the relatively compact form of this input, we employ ICA
based on the joint approximal diagonalization (JADE) algorithm

Fig. 7. Spectral profiles of the filters that comprise the base log-Gabor filter bank. These provide a base case for comparison with hybrid analytic-statistical encoding,
combining log-Gabor outputs and statistical methods for feature learning.
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Fig. 8. Spectral profiles for hybrid filters. Note the anisotropic profiles with respect to angular frequency, varying radial frequency bandwidth, and dependencies across
frequencies with the representation of higher spatial frequency content sometimes coupled to lower frequency patterns.

Fig. 9. Combined spectral coverage for all filters in the standard Gabor filter bank (left), and Hybrid filter bank (right). For the hybrid filters, there is a correspondence to the
prevalence of spectral structure in natural images. Spectral energy within the filter bank is inversely related to prevalence of combined angular and radial frequency
statistics. This implies a relatively even response across the set of filters in representing typical image patterns.
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[7]. In our prior work we have observed that this ICA algorithm
results in a relatively better alignment with properties of V1 cells,
in particular in the direction of axes that define color opponency
[5]. It is notable that this ICA algorithm also carries a relatively low
ceiling on dimensionality that is feasible to consider.

4.2. Results

Fig. 7 demonstrates the magnitude spectra of even log-Gabor
filters that exhibit approximately even spectral coverage from centre
frequencies of 3-42.6 pixels with a factor of 1.7 separating the peak
frequency of each scale. While this defines a relatively standard
oriented bandpass filter bank, there are nuances associated with the
transfer function of each unit, relative peak frequencies, and angular
span in frequencies inspired by some of the initial optimality con-
siderations discussed. In contrast, Fig. 8 demonstrates the magnitude
spectra of analytic-statistical hybrid filters (referred to as hybrid filters
from hereon for brevity). This latter set of spectral profiles is generated
based on the linear combination of log-Gabor filters dictated by the
transformation derived from ICA. In this case, dependencies across
filters are minimized and there are some notable properties in the
coverage of the resulting filter bank. With respect to orientation, filters
sensitive to vertically and horizontally oriented intensity variation are
associated with a narrower angular span in frequency. There are also
instances of filters that span a broader range of frequencies (radial)
within the high frequency range. Moreover, oblique orientations also
elicit stronger dependencies across orientation. While filters than
encode low spatial frequency intensity variation are in many cases
specific to only a range of low frequencies within a specific angular
frequency band, many filters sensitive to high frequencies also exhibit
some sensitivity to lower frequency bands. The dependence of
bandwidth on peak frequency is typically not one of the primary
dimensions for analysis in human studies, however one does observe
cells that are characterized by a more graded drop-off from high to
low frequency patterns versus steeper drop-off in tuning for units
with a lower center frequency [17]. There is also considerable evidence
of recurrent interaction between relatively faster magnocellular path-
ways sensitive to lower spatial frequencies, and parvocellular streams
sensitive to higher frequency bands [6] which may provide an
alternativemechanism for diminishing redundancywithin the ensem-
ble of neurons representing observed stimuli. This observation also
once again hints at the importance of considering the broader set of
units that encode visual information beyond V1, and their potential
implications for an optimal encoding within V1.

As discussed, one motivation for the strategy assumed in this
investigation, lies in constraining the space of possibilities that may
result from statistical machinery (ICA in this case) in determining an
optimal feature set. There are evidently qualitative differences in the
filter set resulting from log-Gabor filters as a starting point, as
opposed to image patches. This supports the notion that leveraging
known properties of cells in visual cortex in combination with
statistical methods and constrained optimization, one may observe
greater variety in the end product of available options for feature
learning. This is of value both in further understanding computation
in visual cortex, but also for artificial vision systems. Fig. 9 demon-
strates the spectral coverage of the standard filter bank (left) and the
hybrid filter bank (right) based on the sum of the magnitude spectra
of filters. Total energy for the hybrid filters appears to be inversely
related to the prevalence of patterns typical of natural images. In
combination with the more even range of frequencies driving
individual cells, this is consistent with expectations for optimality in
an information theoretic sense. It is also worth noting that the specific
configuration of units across frequency bands has some consistency
with hypothesized configurations of units within area V2 [47]. Fig. 10
depicts configurations consistent with V2 neuron properties as
proposed by Wilkinson and Wilson [47] that are consistent with

some of the hybrid filter profiles in their pairing of parallel edge
sensitive filters spanning different frequency bands.

5. Discussion

We have examined several cases of encoding of V1 type
features in the presence of additional specific data or model
structure beyond what is typically considered. This includes a
specific focus on contrast polarity, inclusion of depth information,
or using an existing analytic representation as a starting point.
This yields a number of interesting observations:

1. Relatively specific nuances of computation in visual cortex may
have a significant impact on the nature of representation or
computation that is performed. This may imply significant
implications for understanding neural coding for vision, or
corresponding utility for applications. This is especially appar-
ent in considering the results on contrast polarity that have
been presented.

2. Auxiliary sources of input may alter a representation that relies
on a subset of such input. The results presented on coding in
the presence of depth hint at this notion. In practice, there is a
large gap in information between stationary images and the
sensory input that the human visual system faces. It is there-
fore prudent to exercise caution in drawing functional conclu-
sions from simulation or empirical studies given that
involvement of additional input, or interaction among distinct
regions within visual cortex may have implications for neuro-
nal properties within any localized region.

3. The proposed hybrid filters present an alternative strategy to
producing features as a foundation for computational vision
and in artificial vision systems. Moreover, this line of investiga-
tion hints at some of the potential gains that may be had in
imposing additional structure on strategies for feature learning.
The methods presented allow for precise control over fre-
quency bands, and scale-space coverage while also deriving
benefits of a basis or feature ensemble that subscribes to
information theoretic criteria for optimal visual encoding.

Combining known properties relating to visual function in the
brain with statistical methods may provide alternative means for
producing new strategies for encoding visual input of value to
artificial vision systems. In particular, selectively choosing where
to impose structure, and where to leave slack for parameter
learning may also allow for advantageous properties in the feature
ensemble, and new insight on principles that drive neural encod-
ing in humans. This also notably includes both properties of

Fig. 10. Proposed structure of units in visual area V2, marked by combinations of
simpler Gabor configurations [47]. There exists similarity between hybrid filter
response profiles, and assumed models of response properties of neurons impli-
cated in early visual processing.
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individual cells, but also interaction within and between visual
areas through mechanisms such as normalization or recurrence.

6. Conclusion

The results in this paper demonstrate a variety of interesting
properties that emerge in learning features for early representation of
image patterns. These include focus on units with very specific
properties, the impact of including auxiliary information in feature
learning, and imposing established properties of neural information
processing in human vision on statistical methods for deriving features.

While each of the individual lines of investigation presented are
interesting in their own right, a much grander objective of this work is
towards encouraging greater variety in strategies for deriving features
for the computational understanding of vision or applications in
artificial vision. This appeals to the value of imposing additional and
carefully chosen constraints on learned features based on hypothesized
properties of individual neurons or cell assemblies that have strong
theoretical or experimental support. While there are many different
definitions that drive feature learning based on entropy, sparsity, and
higher order statistics, there is a relative paucity of efforts that enforce
more specific (and possibly non-linear) structure on the resulting
feature assembly, and evident value to a more targeted emphasis on
the latter set of strategies based on the results presented in this paper.
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