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ABSTRACT

Different Tone-Mapping operators (TMOs) produce differ-
ent Low Dynamic Range (LDR) images based on a single
High Dynamic Range (HDR) image. The Tone-Mapped im-
age Quality Index (TMQI) algorithm provides a quantitative
means of assessing the quality of resultant LDR images.
In this paper we test the hypothesis that TMQI predictions
of human image quality can be further aligned with human
judgement of image quality in considering visual attention,
or regions that humans are predicted to fixate within a scene.
We propose a modified version of the TMQI algorithm, a
Saliency weighted Tone-Mapped Quality Index (STMQI)
which demonstrates higher correlation with subjective rank-
ing scores than the standard TMQI metric.

Index Terms— Image quality, Tone-mapping, High dy-
namic range, perception, saliency

1. INTRODUCTION

High dynamic range (HDR) images permit accurate represen-
tation of natural scenes with a vast range of intensity values.
HDR images, benefiting from a very large dynamic range, can
capture small changes in luminance or scene irradiance [1].
However, typical display devices cannot capture the complete
dynamic range of HDR images [2]. As a result, Tone Map-
ping Operators (TMOs) are necessary to convert HDR images
to LDR images. In comparing existing TMOs, mostly human
subjective evaluation has been used so far [2]. Such experi-
ments can be found in [3], [4] and [5].

Inherently, TMOs shrink the dynamic range, which yields
information loss and therefore assessment of the quality of the
tone-mapped result is of importance. Subjective evaluations
are of significant value in this respect, but are time consuming
and require new studies as additional algorithms are proposed.
For this reason, quantifiable measures that agree with subjec-
tive human scores are of value as a means of benchmarking
algorithms [2]. Apart from the structural information within
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an image, high perceptual quality and natural-looking con-
trast are also desired. A Tone-Mapped image Quality Index
(TMQI) has been recently developed by Yeganeh and Wang
[2] which integrates these two metrics into a single quality as-
sessment score for an entire LDR image being compared to its
corresponding HDR image. One application of such an objec-
tive quality assessment measure could be providing a fitness
function for parameter optimization algorithms for TMOs, or
affording a sense of the quality of the result relative to alter-
native algorithms.

One limitation in the TMQI is arguably the equal con-
tribution of all regions of a scene to the final quality score.
Given that human observers may tend to focus on specific re-
gions of a scene, it is reasonable to assume that the relative
importance of different regions in discerning image quality
should also consider predicted gaze locations where higher
quality may be more important. We therefore test the role of
saliency in boosting the performance of the TMQI technique.
Accordingly, we propose a modified version of TMQI [2]
(STMQI), incorporating saliency based on Attention based on
Information Maximization (AIM) [6], to address this issue.
This choice is premised on the strong ties of this algorithm
to both information theory, and agreement with patterns ob-
served in human visual psychophysics experimentation [7].

The remainder of the paper is organized as follows. In
section 2, an overview of the AIM saliency algorithm is pro-
vided based on [7], [8], and [9]. Section 3 explains the stan-
dard TMQI and proposed modified STMQI approach. We
then present results obtained in section 4. Finally, Section 5
discusses conclusions from this study and fruitful directions
for future work.

2. VISUAL SALIENCY

Images tend to have regions that draw visual attention when
examined by a human observer. There are many algorithms
for predicting regions likely to be fixated by human observers
which might be used to determine the relative importance of
regions of an image. As the central hypothesis of the current
work lies in examining whether predictions of human judge-
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ments of image quality may be augmented by saliency, we
focus on one particular algorithm (AIM) [9, 8] that performs
well across a range of benchmarks studies, and also has strong
ties to behavior observed in visual psychophysics studies [7].
This corresponds to regions in a scene that contain the most
informative patches within the image [9] in a Shannon sense
[10]. In the AIM algorithm patch likelihoods are determined
by density estimation on basis coefficients that characterize
each patch of an image derived via Independent Component
Analysis (ICA). This representation is reminiscent of local
Gabor-jets and colour-opponent cells observed in early visual
areas of the primate brain.

For experimental results in this paper, a set of 25 ICA ba-
sis functions corresponding to a window size of 21×21 have
been used. As the patches are independent, the product of
likelihood of all the coefficients corresponding to a local im-
age patch yields the joint likelihood. At the final step, the
saliency map is obtained by transforming the joint likelihood
into Shannon’s measure of self-information by −log(p(x)),
where p(x) is overall likelihood [7]. Some examples of AIM
saliency maps are illustrated in Fig. 1.

Fig. 1. Examples of (contrast equalized) saliency maps from
the AIM algorithm. [7].

3. STANDARD AND PROPOSED MODIFIED TMQI

The standard TMQI algorithm [2] is built upon two design
principles in the Image Quality Assessment (IQA) literature:
Natural Scene Statistics (NSS) [11] and multi-scale Structural
SIMilarity (SSIM) approach [12]. The NSS component mea-
sures the extent to which the resultant LDR image is natural-
looking in its appearance. SSIM compares the structure and
signal strength between LDR and reference HDR image. Ei-
ther module is applied only on the Y component of the image,
after converting LDR image from RGB to Yxy colour space.
The combination of the NSS and SSIM measures are then
combined, resulting in a Tone Mapped image Quality Index
(TMQI) as Q = a × Sα + (1 − a) × Nβ where S and N
are SSIM and NSS scores, respectively, and the other param-
eters are to adjust relative weight and sensitivity of the two
components. We have used the same parameters used in [2],
a = 0.8012, α = 0.3046 and β = 0.7088 such that the di-
rect benefits of saliency within the modified metric are easily

discernible.

3.1. Statistical Naturalness

Statistical naturalness model in the standard TMQI is build
based on brightness and contrast [2]. Yeganeh and Wang
[2] selected approximately 3,000 8bits/pixel grayscale images
from [13, 14]. Histograms of the means and standard devia-
tions of these images were fit by a Gaussian (Pm) and Beta
(Pd) probability density function respectively. The parame-
ters of the fit model were estimated by regression and can be
found in [2]. For a given Y channel of an LDR image, the
mean and standard deviation are calculated with their respec-
tive likelihoods determined by the two fit probability density
functions (Pm and Pd). These two quantities reflect the global
intensity and contrast of an image [2]. As brightness and
contrast are independent [15], their joint probability density
function is their product. Therefore the NSS measure is the
product of the two previously calculated quantities divided
by the normalization factor of max (Pm, Pd). This normal-
ization factor guarantees that the NSS score N , lies between
0 and 1. The NSS component in the proposed STMQI is iden-
tical to that in the standard TMQI given that there is no spatial
component.

3.2. Structural Fidelity

Preserving the structural details of an HDR image within the
tone-mapped LDR image is a key property for a tone-mapping
operator. However, all information in HDR images cannot
be transferred into the LDR version, due to compression of
the intensity range [2]. In this sense, structural fidelity is of
paramount importance for tone-mapped images.

In the standard TMQI, structural fidelity between HDR
and LDR image is measured by a multi-scale variant of SSIM
approach. Assuming x and y are two corresponding local
patches from HDR and LDR images, respectively; local struc-
ture fidelity measure is defined as

Slocal(x, y) =
2σ′

xσ
′
y + C1

σ′
x
2 + σ′

y
2 + C1

.
σxy + C2

σxσy + C2
(1)

where σx, σy and σxy are local standard deviations and cross
correlation between the two patches extracted from the HDR
and LDR image, respectively; σ′

x and σ′
y are mapped ver-

sions of σx, σy; C1 and C2 are called stabilizing constants
[2]. Compared to the original SSIM algorithm [12], the lu-
minance component is dropped; the structure component (i.e.
the second term of Equation 1) is the same; and the contrast
component has changed. TMOs change local intensity and
contrast of the image; so direct comparison of local intensi-
ties between HDR and LDR images is meaningless [2]. As
such, any differences in signal strength between the HDR and
LDR image should not be penalized as is the case in the origi-
nal SSIM. Accordingly, in this variant of SSIM, the algorithm
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penalizes only those cases where the signal strength is above a
visibility threshold in one of the image patches, but below the
visibility threshold in the other image patch. Thus a nonlinear
map is used to calculate σ′ based on σ in such a way that “sig-
nificant signal strength is mapped to 1 and insignificant sig-
nal strength to 0, with a smooth transition in-between.” [2].
The exact calculations and formula for this nonlinear mapping
function can be found in [2].

Local structure fidelity measure, Slocal, is determined lo-
cally through a sliding window. A Gaussian window of size
11×11 with standard deviation of 1.5, suggested by the orig-
inal SSIM algorithm [12], was employed to this end. This
operation produces a map which represents the variation of
structural fidelity throughout the image [2].

In the standard TMQI algorithm, this map is then pooled
by simple averaging to produce a single score; whereas in the
proposed STMQI the pooling strategy is based on the infor-
mation conveyed by each local patch. Therefore the sliding
window measure of structural integrity is applied to the HDR
and LDR images with an additional weighting factor wa cor-
responding to the information content of the patch as deter-
mined by AIM. The overall quality as determined by struc-
tural integrity, therefore allocates more weight to the impor-
tant and informative parts of an image. Raw AIM saliency
scores are scaled to lie within [0, 1] with the saliency weighted
mean SSIM over the entire image providing a single score of
structural integrity.

Visible details and structure of an image are different at
each scale level. As a result, for both TMQI and STMQI,
images are iteratively low-pass filtered and downsampled
to form a Laplacian image pyramid structure [16]. More-
over, the AIM saliency map is also iteratively low-pass fil-
tered and downsampled to accompany the images at each
scale. At each level, l, the structural fidelity score, Sl, is
calculated, and the overall SSIM score combines all these

scores together using the method in [17] as S =
L∏
l=1

Sβl

l

where L = 5 is the total number of scales and {βl} =
{0.0448, 0.2856, 0.3001, 0.2363, 0.1333} is the weight for
each scale as reported in [17]. All the other parameters used
in the proposed modified TMQI are identical to the parame-
ters used in the original TMQI.

4. SIMULATION STUDIES

The performance of the proposed STMQI was evaluated
against the standard TMQI using the dataset provided by [2].
The dataset contains a set of 15 images of indoor and outdoor
scenes. Each set includes 8 LDR images generated from a
single HDR image. Using default parameters, three built-in
Adobe Photoshop TMOs of “Exposure and Gamma,” “Equal-
ize Histogram,” and “Local Adaptation” were employed to
generate three LDR images within each set. The other five
images were created by five different TMOs developed by

Reinhard et al. [18], Drago et al. [19], Durand & Dorsey
[20], Mantiuk et al. [21] and Pattanaik et al. [22]. One set
of example images is shown in Fig. 2. Twenty subjects were
asked to rank the 8 images within each set from 1 to 8. The
mean ranking score for each image is reported in the dataset
[2]. Therefore a rank-order correlation between our ranking
results and subjective rankings can be used as an evaluation
metric.

Fig. 2. Sample LDR images generated by different TMOs
based on a single HDR image from the dataset in [2].

The two following evaluation metrics, as employed in the
original TMQI [2], are applied:

1. Spearman’s rank-order correlation coefficient (SRCC)
as

SRCC = 1−

N∑
i=1

d2i

N (N2 − 1)
(2)

where di is the difference between i-th image’s ranking in the
subjective and objective methods.
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2. Kendall’s rank-order correlation coefficient (KRCC) as

KRCC = 1− Nc −Nd
N (N2 − 1)

(3)

where Nc and Nd are the number of pairs in the correct (con-
cordant) and incorrect (discordant) orders, respectively.

The results are given in Table 1 and Table 2. Table 1 re-
ports SRCC metric for the standard TMQI algorithm and four
other proposed STMQIs, each of which incorporates the AIM
saliency map in a different manner. Table 2 has the same
structure but uses the KRCC evaluation metric in scoring. The
details of experimentation on these four additional STMQI
metrics follow.

Table 1. SRCC Metric for the Standard TMQI and its Varia-
tions

Image Set
Original
TMQI

LDR
Saliency

Pooled
Saliency

HDR
Saliency

HDR5

Saliency
1 0.9048 0.8810 0.8810 0.8810 0.9524
2 0.7857 0.7619 0.7857 0.7857 0.7857
3 0.8095 0.8095 0.8333 0.8333 0.8333
4 0.8810 0.8810 0.9048 0.8810 0.8810
5 0.7381 0.7381 0.7381 0.6667 0.7857
6 0.9762 0.9762 0.9762 0.9762 0.9524
7 0.6905 0.6429 0.6429 0.7857 0.7857
8 0.7143 0.7143 0.7143 0.7143 0.7381
9 0.6905 0.6905 0.6905 0.6905 0.8571

10 0.9286 0.9286 0.9286 0.9048 0.9762
11 0.8810 0.8333 0.8810 0.8810 0.8810
12 0.7143 0.7143 0.7143 0.7143 0.7143
13 0.7143 0.7143 0.7143 0.8333 0.8810
14 0.7381 0.7381 0.7381 0.8333 0.9286
15 0.9524 0.9762 0.9762 0.9762 0.9762

Mean 0.8080 0.8000 0.8080 0.8238 0.8619

Table 2. KRCC Metric for the Standard TMQI and its Varia-
tions

Image Set
Original
TMQI

LDR
Saliency

Pooled
Saliency

HDR
Saliency

HDR5

Saliency
1 0.7857 0.7143 0.7143 0.7143 0.8571
2 0.6429 0.5714 0.6429 0.6429 0.6429
3 0.6429 0.6429 0.7143 0.7143 0.7143
4 0.7143 0.7143 0.7857 0.7143 0.7143
5 0.6429 0.6429 0.6429 0.5000 0.5000
6 0.9286 0.9286 0.9286 0.9286 0.8571
7 0.5714 0.5000 0.5000 0.6429 0.6429
8 0.5714 0.5714 0.5714 0.5714 0.6429
9 0.5714 0.5714 0.5714 0.5714 0.7857

10 0.8571 0.8571 0.8571 0.7857 0.9286
11 0.7143 0.6429 0.7143 0.7143 0.7143
12 0.5714 0.5714 0.5714 0.5714 0.5714
13 0.5714 0.5714 0.5714 0.7143 0.7857
14 0.6429 0.6429 0.6429 0.7143 0.8571
15 0.8571 0.9286 0.9286 0.9286 0.9286

Mean 0.6857 0.6714 0.6905 0.6952 0.7429

In the LDR Saliency, the wa values are calculated based
on the LDR image being compared to the reference HDR im-
age. On first inspection, it may be surprising that average per-
formance is worse than the standard TMQI. As the reader may

have noticed in Fig. 2, LDR images may have quite different
appearance (and salient regions). A human observer rank-
ing the images sees a variety of tone-mapped versions, and as
such the true salient regions of the image might be different
form the AIM saliency map for a particular LDR given that
information is already discarded. For this reason, wa values
based on AIM for a single LDR image fails to improve upon
the standard TMQI. As an alternative test, one might con-
sider averaging computed saliency across the 8 different LDR
tone-mapped images to derive the weighting wa. The Pooled
Saliency column reflects this test and the correlation score for
this algorithm is only on par with the standard TMQI. More-
over, this strategy cannot be applied in practice, as in practical
applications usually one LDR image is provided to be evalu-
ated. The most natural approach is to compute the saliency
and associated weighting with complete information from the
HDR image (HDR Saliency). As can be seen in Tables 1 and
2, this yields an STMQI metric that outperforms the standard
TMQI on average.

In applying a saliency driven weighting of structural in-
tegrity, the relative contrast (or contrast of the weighting map)
is an important factor, so a natural extension to consider is of
the form wγa to adjust the contrast of the weighting. Therefore
the final approach, namely, HDR5 Saliency employs a power
law transformation with γ = 5 to the multi-scale saliency
weighting maps. This yields a higher emphasis on regions ex-
pected to draw attention from human observers in the weight-
ing matrix for the STMQI algorithm. A γ value of 5 was
found to be optimal in testing, and the average performance
of the STMQI with the non-linearity is much better than all
alternatives. The significant positive value as an optimal pa-
rameter further suggests that spatial weighting in line with
expected viewing behaviour is a very important factor in de-
riving high-quality performance metrics.

5. CONCLUSION

The TMQI model allows for quantitative assessment of the
quality of tone-mapped images using their accompanying
HDR images as references. In this paper, we have demon-
strated that inclusion of prediction of salient regions of an
image in tone-mapped image quality assessment, results in
an improved tone-mapping quality metric. The proposed
STMQI shows strong correlation with subjective evaluations
of image quality, and achieves higher Spearman and Kendall
rank-order correlation coefficients than that of the standard
TMQI metric. Future development of this work is directed
at assessing alternative saliency measures and towards more
sophisticated measures of naturalness based on both global
and local image statistics towards stronger accordance with
human decisions.
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