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Abstract. This paper describes a biologically motivated local context
operator to improve low-level visual feature representations. The com-
putation borrows the idea from the primate visual system that different
visual features are computed with different speeds in the visual system
and thus they can positively affect each other via early recurrent mod-
ulations. The modulation improves visual representation by suppressing
responses with respect to background pixels, cluttered scene parts and
image noise. The proposed local contextual computation is fundamen-
tally different from exiting approaches that involve “whole scene” per-
spectives. Context-modulated visual feature representations are tested in
a variety of existing saliency algorithms. Using real images and videos, we
quantitatively compare output saliency representations between
modulated and non-modulated architectures with respect to human ex-
perimental data. Results clearly demonstrate that local contextual mod-
ulation has a positive and consistent impact on the saliency computation.
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1 Introduction

A biologically motivated local context operator is proposed to improve low-level
visual feature representations. Specifically, the computation is inspired by knowl-
edge of the primate visual system that visual features are calculated through
visual pathways with different speeds and thus they can positively affect each
other via recurrent modulations [6].

It has been proposed in the literature that visual context influences visual per-
ception to a great extent [10]. For example, knowing the context of a workbench
improves performance in searching for tools. However, the optimal representa-
tion of visual context is still unclear. Most existing theories view context from
a “whole scene” perspective. In [16–18], context is a low-dimensional represen-
tation of the whole image, termed as “gist” or spatial envelope. The purpose
of employing such a holistic representation is to identify scene types and to use
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the identified scene knowledge as a prior to predict spatial locations of specific
objects. In [2], context is defined as scenery structure, and it is used to predict
the likelihood of an object being present. Although these works have been shown
to benefit object processing, there are other biologically motivated routes to use
context in vision, specifically at less abstract representational levels.

In this paper, visual context is considered from a local feature representational
perspective, which is fundamentally different from existing models. The work is
motivated from recent studies of the asynchronous visual feature processing of
the primate visual system [6,11,15]. Specifically, it is noted that: 1) visual signals
are processed via the two main visual pathways at different speeds, with signals
projecting through the dorsal pathway significantly faster than those through
the ventral pathway, and 2) there exist recurrent connections that cross the two
pathways, namely, from higher-level dorsal regions to lower-level ventral regions.
It is thus highly likely that our brain utilizes these speed differences to apply dor-
sal percepts to positively improve ventral processing via recurrent mechanisms,
which consequently impact later computations in the ventral pathway.

In a previous study [19], a computational model of local context is developed
to improve visual feature representations. The computation first extracts visual
features of different types, which are consistent with the primate dorsal and
ventral pathway characteristics. The model then uses “dorsal” features to mod-
ulate “ventral” features via multiplicative inhibition. The modulation improves
“ventral” representation by suppressing responses with respect to background
pixels, cluttered scene parts and image noise, all of which could negatively impact
processing of a real target.

To investigate whether the proposed local context operator can improve visual
feature representations, it is convenient to test our work on several existing visual
saliency models. The influence of local contextual modulation can be directly
reflected through saliency performance. Experiments using real world images and
videos have been conducted. Comparison to human experimental data indicates
that contextually modulated feature representations have positive and consistent
impact on the saliency performance.

The rest of the paper is organized as the follows. Section 2 introduces the
general model of local contextual modulation. Second 3 formalizes the compu-
tational components to capture the idea. Section 4 describes the experimental
procedure and test results. Section 5 concludes the work.

2 Modeling Local Contextual Modulation

The model of local contextual modulation is informed by our knowledge of the
structure and functions of the two-pathway visual hierarchy [1, 20]. The dorsal
pathway receives input from magnocellular layer of the lateral geniculate nucleus
(LGN) and continues via dorsal layers of the primary visual cortex (V1), middle
temporal cortex (MT) to the posterior parietal cortex for motion and action
perception. The ventral pathway starts from parvocellular layers of the LGN,
through ventral layers of V1, V2, V4 to the inferior temporal cortex for high
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Fig. 1. A hierarchical view of the proposed model. Visual input is computed
along the dorsal and ventral pathway. The double arrow lines depict the process of
local context is created from MT and is used to modulate ventral V1 output.

acuity object perception. Magcellular cells are achromatic, have a higher peak
sensitivity to contrast and respond to higher temporal frequencies than parvocel-
lular cells, while parvocellular cells are color-sensitive, respond to higher spatial
frequencies and show higher sensitivity at the lowest temporal frequencies. The
model further relies on the facts that: 1) the two pathways compute different vi-
sual features, 2) pathway connections have different conduction speeds, with the
dorsal pathway conducting signals faster than the ventral pathway, and 3) timing
of the process allows that fast dorsal percepts can influence ventral processing
via recurrent modulation.

Figure 1 illustrates the general flowchart of the proposed model. Two sets of vi-
sual features are separately calculated, corresponding to the dorsal features and the
ventral features. In our case, they are defined differently in spatiotemporal scale.
Specifically, our dorsal representation employs high-temporal-low-spatial scales
and the ventral representation includes low-temporal-high-spatial scales. This is
consistent with the neurophysiological properties of the primate visual system [7].

It is important to note that the ventral computation represents the usual kind
of feature processing seen in other models. On the other hand, the local context
representation is formed based on the dorsal features, and is used to modulate
ventral computation. Therefore later stages of (ventral) visual processing reflects
inhibited signals as opposed to the usual (non-inhibited) outputs.

3 Formalization

This section discuss the computational components needed to formalize the
model. Before defining the modulation, computations in the two visual pathways
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are detailed. The modeled hierarchy starts from the retina1, via LGN to V1 and
MT. Computation at each layer is represented as a bank of image filters.

The center-surround receptive fields (RFs) of the LGN have spatial response
patterns consistent with Difference-of-Gaussians filter [13] given by:

fLGNspatial(x, y) =
1
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2σ2
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where σc and σs are the bandwidth for the center and surround Gaussian respec-
tively. In our implementation, they are set for magnocellular (σc = 3, σs = 4.8)
and parvocellular (σc = 1, σs = 1.6) respectively. The LGN temporal response
pattern is described as a log-Gabor filter [8] defined in the frequency domain as:

FLGNtemporal(w) = exp {− log(w/w0)
2

2 log(σt/w0)2
} (2)

where w0 is the center temporal frequency, σt is the bandwidth. We employ
a multi-scale temporal filter bank to provide an even spectrum coverage by
using different w0 and σt. Specifically, for parvocellular w0 = 3, 9, 27, and for
magnocellular w0 = 9, 27, 81. σt = 0.55w0 for both cases.

Area V1 receives feed-forward projections from LGN and integrates energy
along different spatiotemporal orientations. The spatial selectivity is described
as a 2D orientated log-Gabor filter defined in frequency domain as:

FV 1spatial(u, v) = exp {−log(u1/u0)
2

2log(σu/u0)2
} · exp {−v21

2σ2
v

} (3)

where u1 = u cos(θ)+v sin(θ), v1 = −u sin(θ)+v cos(θ), θ denotes the orientation.
Our implementation has 6 orientations. u0 denotes the center spatial frequency,
σu and σv denote the spatial bandwidth along u and v axis respectively. In
our case, ventral V1 uses u0 = 9, 27, 81 and dorsal V1 uses u0 = 3, 9, 27. The
bandwidths in both cases are set to σu = 0.55u0 and σv = 0.55u0. The temporal
profile of a V1 neuron is defined as a lowpass filter in time domain as:

fV 1temporal(t) = exp {−t2

2σ2
t

} (4)

where σt denotes the temporal bandwidth. In our implementation, σt = 1.
Area MT integrates opponent energy [3] provided by dorsal V1 as:

MTθ(x, y, t) =
∑

Δx,Δy,Δt

V 1θ(x, y, t)−
∑

Δx,Δy,Δt

V 1θ+π(x, y, t) (5)

where
∑

denotes the summation of dorsal V1 energy over range (Δx,Δy,Δt).
The output of MT is further integrated across spatiotemporal orientations

to produce the local context representation, which is then used to modu-
late ventral V1 representations. Although several aspects of computation at the

1 To simplify the computation, the retina is represented directly by the input image
without any processing.
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Fig. 2. A demonstration of the proposed computational model of local contex-
tual modulation. Stimuli: two circles of plaid pattern in front of uniformly distributed
pseudorandom noisy background. Both pathways compute pure spatial features. The
dorsal pathway is sensitive to lower frequency (coarse scales) features to generate an
early recurrent representation. Higher frequency orientation (fine scales) features being
calculated by the ventral pathway are then multiplicatively inhibited by the context rep-
resentation. Result: The noisy background is suppressed while targets remain.

neuronal level remain to be characterized, experimental results of orientation-
selective neurons [9, 14] have suggested that the biophysical underpinning of
such an operation can be described mechanistically by multiplication. Further,
the goal of modulation is to improve feature representation by suppressing in-
consistent responses. Thus, we propose the inhibition process between MT and
ventral V1 as multiplicative inhibition. Since it is unclear where the MT-
ventral V1 feedback fibers terminate, we have considered two possible locations:
input and output of ventral V1. Our tests show similar results. Therefore, in
what follows we assume the modulation is at the output of ventral V1 as:

V 1′V (x, y, t) = V 1V (x, y, t) ∗ Sig(
∑

θ

MTθ(x, y, t)) (6)

where V 1V denotes output of ventral V1, V 1′V is modulated output, and Sig()
is a sigmoid function used to rectify the MT output in nonlinearly between 0..1.

To briefly illustrate the principles, Figure 2 shows an example of selecting two
simulated circles with plaid patterns in front of uniformly distributed noise. In
the example, V1 has 4 orientations. It clearly shows that dorsal V1 highlights
object regions (but without spatial details). Non-modulated ventral V1 extracts
details but of both objects and background, by which boundaries of the circles
are unclear. MT integrates the output of dorsal V1 to produce a context rep-
resentation. The representation then inhibits output of ventral V1, after which
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background activations are suppressed, leaving the two circles standing out. The
system is then able to process the targets without background interference.

4 Experiments

In order to enable a quantitative evaluation of the impact of local context, it is
convenient to incorporate the modulated feature representations into a number
of feed-forward models of visual saliency [5,12,21]. The purpose of the evaluation
is to determine the effect of contextual modulation as a general and intermedi-
ate process to the existing works. Feed-forward models used in the evaluation
capture the computation of visual saliency from different perspectives. In partic-
ular, saliency in [12] is defined as strength of summed visual feature activations,
while in the other two proposals [5, 21], visual saliency arises from measuring
self-information (but differently) based on natural image statistics. It is thus
natural to deem these original models as starting points that provide baseline
performance. The proposed computation fits itself easily into these models by
applying the context representation to modulate feature maps provided by the
models. This is such that in the revised models, saliency representations are cal-
culated based on the modulated feature maps. One can then evaluate to what
extent context improves performance over baseline scores.

Saliency performance ismeasured using receiver operating characteristic (ROC)
curves, which have been widely used in related works. For a given ground truth
(G) and a saliency map (S), saliency values are normalized between [0...1]. By
varying the threshold δ ∈ [0...1], a smooth curve is generated as true positive
(G(x, y) >= δ and S(x, y) >= δ) rate versus false positive (G(x, y) < δ and
S(x, y) >= δ) rate, where (x, y) is pixel coordinate.

The implementations are tested with cluttered images [5] to evaluate spatial
context, and tested with surveillance videos spatiotemporal context.

Figure 3 compares spatial modulation. Saliency maps produced by the orig-
inal models and the modulated versions are paired in groups. Reddish pixels
indicate salient regions. It is clearly shown that there are more similarities be-
tween real objects in the input images and the reddish regions in the modulated
saliency maps (right image of each pair) than the reddish regions in the original
saliency maps (left image of each pair). The main difference between a pair of
saliency maps lies in the fact that a substantial amount of cluttered background
is inhibited. For each input image, salient regions produced by the three original
models are different. However, in the modulated versions, salient regions are all
confined to the context representation, leaving the remaining regions mostly in
blue (not salient).

Mean ROC curves are generated based on human fixation densities [5]. From
the lower charts of Figure 3, it is obvious that curves produced from modulated
saliency maps (solid lines) augment their original works (dashed lines) signifi-
cantly. Areas under mean ROC curves are calculated. As concluded in Table 1,
modulation raises areas under curves in all cases, which further confirms that
local contextual facilitation is generally effective in improving different saliency
measurements.
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Fig. 3. Use early recurrence to improve visual saliency. Up: Impact of
modulation for three different saliency algorithms [5, 12, 21]. Down: Mean ROC to
access saliency improvements between modulated saliency maps (solid lines) and non-
modulated saliency maps (dashed lines). Numbers in brackets indicate areas under
curves.

Table 1. Comparison of areas under mean ROC curves

Original Modulated Improvements

Bruce & Tsotsos 2009 [5] 0.781 0.812 +3.97%
Itti et al. 1998 [12] 0.720 0.817 +13.47%
Zhang et al. 2008 [21] 0.719 0.799 +11.13%
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Fig. 4. Use early spatiotemporal context to improve visual saliency. Left:
image from test videos. Middle: early recurrent representation that highlight regions
consisting with moving objects. Right: Mean ROC curves of original AIM [5] (blue), a
spatiotemporal alternative [4] (green) and modulated AIM (red).

Figure 4 illustrates how spatiotemporal (motion) context is involved in im-
proving saliency maps. Videos are shot from various viewing angles and under
different lightening conditions. Targets (i.e. vehicles and pedestrians) are man-
ually labeled and saved as ground truth files for evaluation. As shown, context
clearly highlights regions corresponding to moving stimuli in most cases, leaving
stationary and cluttered parts suppressed. Improvement over original saliency
model [5] is obvious by comparing the mean ROC curves (red lines versus blue
lines). Also compared is a reference model similar to [4], where saliency is com-
puted using output of spatiotemporal filters (green lines).
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5 Conclusion

In this paper, we have proposed a novel computational approach to visual infor-
mation processing, which is inspired by research of the primate visual system. In
its most simplified form, the model applies local context (activations of dorsal
regions) to improve visual feature representations (computed in the ventral path-
way). The modulation improves visual representation by suppressing responses
with respect to background pixels, cluttered scene parts and image noise.

The proposed contextual modulation is a local and image-based operation,
which is different from existing context models involving scene Gist [16–18].
Although both approaches are proposed with the goal of having contextual rep-
resentation affect visual perception, their motivations and biological foundations
are different. The main focus of Oliva and colleagues is to use context to prime
the input image with regions that are most likely to contain targets. Such a
process is based on a model that learns target features and locations from past
experience. Context described in our work, on the contrary, captures the char-
acteristics of early visual cortical structures and computational principles, that
context exerts its influence at a very early stage.

Thework has been applied to three saliencymodels to investigate the influence of
local context. Quantitative analysis is provided. Saliencymaps generated based on
the modulated feature representation significantly augment their non-modulated
versions.The results clearly demonstrate that our proposed local contextualmodu-
lation is a robust and generally applicable process. In this paper, contextualmodu-
lation has been focused primarily to simulateMT-ventral V1 recurrent processing,
possibilities for similar modulation process may exist between other form of visual
computation. This presents additional fruitful avenue for further work.
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