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Abstract—In this paper, we consider the role that visual
representation plays in determining the behavior of a generic
model of visual salience. There are a variety of different
representations that have been employed to form an early
visual representation of image structure. The experiments
presented demonstrate that the choice of representation has
an appreciable effect on the system behavior. The reasons for
these differences are discussed, and generalized to implications
for vision systems in general. In instances where a design choice
is arbitrary, we look to the properties of visual representation
in early visual processing in humans for answers. The results
as a whole demonstrate the importance of filter choice and
highlight some desirable properties of log-Gabor filters.
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I. INTRODUCTION

Fast determination of visually salient targets may present
an advantageous component of a combined attention and
recognition system. The processing hardware involved in
models that seek to characterize visual salience typically
involve units that model local oriented structure in the scene.
This may additionally include units sensitive to intensity,
color, local contrast, edge content and a variety of other
possibilities. A common element to most models that char-
acterize saliency in some manner is a representation of
oriented intensity gradients. This generally comes in the
form of a bank of filters each selective for a particular
combination of orientation and spatial frequency. There exist
a variety of different means of constructing a representation
of this form that are all similar in their nature but that
differ in their precise details. It is apparent that spectral
sampling may present a very important factor in determining
salience. One might expect then, that the predictions of
visually salient regions of a scene to depend on the precise
representation used to model local oriented structure in the
scene. To this end, we explore the extent to which this is
the case, towards determining an optimal representation for
a visual surveillance task. This is investigated in the context
of the AIM model of visual saliency [1,2]. There exists prior
efforts that define optimality according to a specific objective
function [3,4,5]. In this case, the definition of optimality
is in consideration to achieving even spectral coverage and
insofar as it supports the estimation of salience in a visual
surveillance task. While some specifics of parameterization

are discussed, the emphasis is on the comparison of different
classes of early Gabor-like visual filters.

The paper is formatted as follows: In section 2, a number
of alternatives for representing local oriented structure are
presented. This includes a look at the role that parame-
terization plays in dictating the nature of the filter banks
in question. In section 3, experiments conducted based on
visual surveillance scenarios are presented to demonstrate
how the various representations differ in their ability to
signal targets of potential interest to a recognition system.
Finally, section 4 summarizes these results and discusses
implications of the work that generalize to the modeling of
salience at large.

II. EARLY VISUAL REPRESENTATION

A variety of linear filters have been proposed as means of
representing local frequency structure of an image. Gabor
filters are ubiquitous in the modeling literature offering
simultaneous localization of local structure in space and fre-
quency. Starting with this definition, a variety of alternatives
are described in this section with general practical issues that
pertain to each choice being highlighted.

A. Gabor filters

Gabor filters are ubiquitous in the computer vision and
image processing literature. They also figure prominently
in modeling early visual representation in humans. Gabor
filters produce a representation corresponding to a localized
region of space and a specific spatial frequency band and
orientation. The definition of a Gabor filter is as follows:

g(x, y;λ, θ, ψ, σ, γ) = exp

(
x′2 + γ2y′2

−2σ2

)
cos

(
2π
x′

λ
+ ψ

)
with x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ.

The aforementioned equation depicts only the real part of
the filter with the cos becoming a sin in the imaginary coun-
terpart. The parameters are as follows: λ is the wavelength
of the sinusoidal component, θ dictates the orientation, ψ
is the phase offset, σ controls the extent of the Gaussian
envelope, and γ controls the aspect ratio.
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B. log-Gabor filters

The log-Gabor function is an alternative to the Gabor
function proposed in [6]. Log-Gabor filters differ from
Gabor filters in that they have a transfer function that is
symmetric on a log frequency scale. For this reason, one
cannot directly write the definition of log-Gabor filters in
the spatial domain. Instead, log-Gabor filters are constructed
in the frequency domain according to the definition:

G(w) = exp{−[log(w/wo)]
2/2[log(k/wo)]

2}

with wo the filters center frequency. k is chosen such that
k/wo is constant for varying choices of wo. k/wo effectively
controls the filter bandwidth. The precise placement of
bands then depends on the bandwidth and center frequencies
chosen. This issue is discussed further at the end of this
section.

The structure of natural images is such that the spectral
power falls off as a function of 1/f with f being the radial
frequency. This implies that a standard Gabor filter is biased
in its sampling, with a higher likelihood of the filter being
driven by lower spatial frequency content. In using a log-
Gabor filter, one compensates for this bias resulting in a
representation that is arguably a better encoding of visual
content. It is interesting to note that the representation that
appears in the early areas of human visual cortex is more
consistent with a Gabor like representation that has a transfer
function that is symmetric on a log scale [7]. This lends
credence to the claim that log-Gabor filters are optimal
in some sense as a representation of angular and radial
frequency.

C. Difference of Gaussians

Inspired by the human visual system, a Difference of
Gaussians based representation provides an alternative filter
approach to extract oriented features. It has been shown [8,9]
that the spatial organization of lateral geniculate nucleus
(LGN) receptive fields accounts for orientation selectivity
of V1 simple cells. Generally, a simple cell responds to a
specific orientation from elongated patterns of converging
symmetric LGN filters, which takes the form of an oriented
Difference of Gaussians filter.

The center-surround receptive fields of LGN have re-
sponse patterns that can be described as a Difference-of-
Gaussian filter [10] given by:

flgn(x, y) =
1

2πσ2
c

exp {−(x2 + y2)

2σ2
c

}

− 1

2πσ2
s

exp {−(x2 + y2)

2σ2
s

}
(1)

where σc and σs are the bandwidth (standard deviation)
for the center and surround Gaussian function respectively.

Through image convolution, signals containing spatial fre-
quency confined to σc and σs are selected, which can be
tuned for either magnocellular or parvocellular cells.

Orientation selectivity of a V1 simple cell can be repre-
sented by Oriented Difference of Gaussians (O-DOG) filter,
which accumulates strengths over a group of LGN center-
surround filters (DOGs) towards the desired orientation. The
O-DOG filter is therefore defined as:

fv1(x, y) =
∑
∆x

∑
∆y

flgn(x+ xθ, y + yθ) · fG(x, y) (2)

where ∆x and ∆y denote the range of V1 receptive field
with respect to number of LGN receptive fields in Cartesian
coordinates. The orientation is governed by xθ = ∆x cos θ+
∆y sin θ and yθ = −∆x sin θ + ∆y cos θ.

Gaussian function fG(x, y) is used in (2) to attenuate
responses that are far from the center of the filter, which
is given by:

fG(x, y) = exp {−(
x2
θ

2σ2
x

+
y2
θ

2σ2
y

)} (3)

where σx and σy are the bandwidth (standard deviation) of
the simple cell towards x and y axis respectively. The shape
of the Gaussian profile is chosen to have the same orientation
as the DOGs, which is governed by xθ = x cos θ + y sin θ
and yθ = −x sin θ + y cos θ.

D. Independent Component Analysis

Rather than a functional form, one can also learn a
representation by optimizing an objective function

Independent Component Analysis (ICA) is one means
of producing a filter set for which the response of the
constituent units are as independent as possible. ICA is
a form of projection pursuit that seeks basis filters that
optimize an objective function. The objective is chosen to
guide the algorithm towards the most independent basis
set possible. This typically involves considering information
theoretic quantities [11], or higher order statistics [12]. In
the case of images, choosing random patches and seeking
a set of basis filters to encode the patches in a manner
in which the constituent filters exhibit responses that are
mutually independent, results in a basis set of Gabor-like
filters [13]. In the experiments considered in this paper, the
basis sets are learned using a variety of algorithms using
21x21 random patches from RGB images. The details are
described in the section on experimentation.

Existing instances of AIM have employed independent
components towards a likelihood estimate formulated as a
product of 1D marginal likelihood estimates

E. Filter banks and parameterization

One facet of the filter bank based representation produced
by parametric models, that has not yet been discussed, is the
role of parameters. The specific nature of the function that
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characterizes content in a local neighbourhood has already
been established in the preceding discussion. Also important
is the set of parameters chosen to construct a filter bank. It
is this set of parameters that dictates the spectral sampling
including the precision of angular and radial frequency
localization. The following discusses briefly steps towards
achieving a sensible set of parameters for the filter banks to
be used in the experimentation.

The possible space of parameters in characterizing Gabor
and log-Gabor filters is large. A sensible guide for choosing
these variables may correspond to values corresponding
approximately to Gabor-like cells appearing in the early
visual cortex of primates. This representation arguably has
some optimality built into it that corresponds to the structure
of the natural world [6].

The following considerations establish in short a set of
constraints that define an idealized filter bank consistent with
the visual representation appearing in early visual cortex of
primates (referred to as V1 from hereon). Parameters tied
to Gabor filtering that are discussed in the following are
described in [14]. For further detail, readers may wish to
refer to this work.

Beginning with Gabor filters, one might state the follow-
ing:

• The half-magnitude frequency bandwidth is 1.4 cpd for
all filters. In V1, the bandwidth of cells varies from 1.7
for cells that respond to low spatial frequencies to 1.2
for cells that correspond to high spatial frequencies.
Choosing 1.4 then is a good compromise without
the added complexity of representing a variable half-
magnitude bandwidth.

• The half-magnitude orientation bandwidth is 40 de-
grees. Here the variability in visual cortex is large
ranging from 10 degrees to 60 degrees depending on the
cell under consideration. Again, 40 degrees is a good
compromise to avoid the added complexity of variable
orientation bandwidths.

• One may derive the fact that the filters have an aspect
ratio of 1.24 from the above. Setting the half-magnitude
contour of one frequency band to the lower contour of
the following frequency band ensures even coverage.

The structure of log-Gabor filters lends itself naturally to
designing a filter bank according to practical considerations.
For a deep discussion of these considerations, see [15]. A
summary of considerations that contribute to the design of
a log-Gabor filter bank follow:

• For broad bandwidth log-Gabor filters, the tails may be
extended to a significant degree in the spatial domain.
One might then consider the bandwidth that requires
the minimum spatial filter width to ensure good spatial
localization. In practice this is in the range of 1 to 3
octaves and 2.1 octaves was used in our experiments.
This determination derives from considering the width

needed to represent 99% of the filter’s absolute area.
• The Nyquist wavelength of 2 pixels defines the mini-

mum filter wavelength. In practice, choosing 3 prevents
strong aliasing effects. [15]

• The maximum wavelength is determined by an up-
per limit chosen by the number of frequency bands
represented. This may be defined implicitly based on
a chosen number of scales, and the smallest filter
wavelength.

• Filter bandwidth is determined by the ratio of the
standard deviation of the log-Gabor’s transfer function
to the filter centre frequency. A value between 1 and
2 octaves is sensible and setting the ratio to 0.65 is
a good practical choice. Note that 0.55 corresponds
approximately to 2 octaves and 0.75 to approximately
1 octave.

• There is a tradeoff between even spectral coverage
and correlation between filters. The scaling factor that
achieves even spectral coverage may be determined
empirically and 2.1 does so for the ratio of 0.65
mentioned previously.

• The representation of angular frequency is determined
by the spread of each filter and the number of orien-
tations considered. Even coverage and correlation be-
tween filters again comes into play. By setting the ratio
of the interval between orientations and the standard
deviation of the angular Gaussian to 1.5 one achieves
even spectral coverage.

Defining a rigorous set of criteria for the Difference of
Gaussian based filters is a challenging issue. For this reason,
the representation considered is crafted to maintain coverage
as even as possible across the frequency plane.

This section has gone to significant lengths to outline
the issues that come into play in designing a filter bank
representation of the image. It is clear that there are many
factors at play and one needs to be careful to ensure that the
set of features produces a representation of image content
that is adequate for the task at hand. In the following
sections, experimentation and discussion pertaining to the
impact of representation on task performance is presented.

F. Summary of early visual representations

In this section we have discussed a variety of different op-
tions for producing similar representations of local oriented
intensity variation in an image. In the experimentation that
follows, the set of operations that are considered includes:
A bank of Gabor filters, A bank of log-Gabor filters, A
Hierarchical Gabor based representation (fixed Gabor filters
with varying image scale), Filters derived through ICA with
RGB patches as input, Filters derived through ICA based
on a YCbCr color space, and filters based on a spatially
oriented sum over numerous circular symmetric DoG filters
as described.
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In the section that follows, the result of experiments are
presented in which each of the aforementioned options forms
the early visual representation used to derive a measure of
visual salience based on the model described in [1,2].

III. EXPERIMENTAL EVALUATION

Data employed in experimentation was collected from a
number of elevated vantage points using a variety of cameras
and varied imaging and environmental conditions. Addi-
tionally, data from aerial vehicles from a variety of public
sources was used in evaluation. Qualitative evaluation was
carried out on the entirety of the aformentioned data, while
quantitative evaluation was performed on a representative
subset of these videos for which ground truth was available.
The ground truth for this data consisted of a set of bounding
boxes for each frame of the video indicating the locations
of pedestrians and vehicles in the video sequence. The
intention of this labeling was to indicate targets that are not
a fixed item or person (i.e. not part of the background). The
evaluation then measures the extent to which the choice of
visual representation impacts on the determination of salient
targets (defined as people and vehicles) in this context.
Labeling was carried out using the SimpleLabel labeling
software developed as part of this assessment [16]. All of
the results presented correspond to the output of the AIM
algorithm [1,2], while varying the visual representation on
which this definition is applied. The definition of saliency
computed by AIM is as follows:

For a given local neighborhood of the image, one has
a representation w corresponding to filters w1, w2, ..., wn
that comprise a Gabor-like visual representation of local
content. One may define the saliency according to the
definition appearing in [1,2], as the −log(p(w1 = v1, w2 =
v2, ..., wn = vn)) which quantifies the negative log like-
lihood of observing the local response vector with values
v1, ..., vn within a particular context. The presumed indepen-
dence of the filter responses (originally inspired by the ICA
representation) means that p(w1 = v1, w2 = v2, ..., wn =
vn) =

∏n
i=1 p(wi = vi). Thus, a sparse representation

allows the estimation of the n-dimensional space described
by w to be derived from n one dimensional probability
density functions. An appropriate context may include a
larger area encompassing the local neigbourhood described
by w, or the entire scene in question. This latter definition of
w is used in the experimentation appearing in this paper. The
density estimate is computed based on a histogram estimate
with 100 bins. Sample frames from the ensemble of videos
used for qualitative evaluation appear in figure 1.

The quantitative assessment is based on two different
standard metrics for assessing classifiers as follows: First
a threshold is chosen to convert a saliency map to a binary
classification. This is compared with the binary mask corre-
sponding to the bounding boxes drawn for the same image.
In the ideal case, the classification overlaps perfectly with

Figure 1. A single frame from a number of the videos used in experimen-
tation and in the qualitative assessment of algorithm performance. Videos
consist of a variety of different viewpoints ranging from approximately 45
degrees from the ground, to an overhead birds-eye view.

the bounding boxes drawn. The nature of the classification
produced by the saliency map depends on the threshold that
is chosen. In choosing a large number of thresholds from 0
to 1, an entire performance curve may be drawn for each
of the methods under consideration. The specific thresholds
chosen are based on the 0th, 1st, 2nd, ..., 100th percentile
values in the saliency map. The correspondence between the
classification map and the bounding box map is carried out
according to 2 separate metrics as follows.

A. ROC-curve

The ROC curve is constructed based on analysis that is
done on a pixel by pixel basis. Given a particular threshold,
pixels in the saliency map are set to a value of 0 or 1 (above
or below threshold). The bounding box image also specifies
a value of 0 or 1 for each pixel location based on its human
labeled ground truth. Four different outcomes are defined
as follows: TN: True negative, 0 in saliency map and 0 in
bounding box map. FN: False negative: 0 in saliency map
and 1 in bounding box map. TP: True positive: 1 in saliency
map and 1 in bounding box map. FP: False positive: 1 in
saliency map and 0 in bounding box map. Each threshold
yields a set of 4 values given by these quantities. The ROC
curve depicts the true positive rate versus the false positive
rate. The two extremes correspond to a 0% TP and 0% FP
rate and to a 100% TP and 100% FP rate. Choosing a variety
of thresholds results in a smooth curve between these two
extremes.

B. Precision-Recall curve

The precision-recall curve is in the same spirit as the
ROC-curve. However, the precise quantity that is on display
is qualitatively different. Precision refers to the fraction of
pixels labeled as target by the saliency algorithm that are
labeled as target in the ground truth. Recall refers to the
fraction of pixels with a ground truth labeling as a target
that were reported as a target by the algorithm. Therefore:

Precision = TP/(TP + FP )

and
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Figure 2. A depiction of the algorithmic determination of saliency attributed to the representation corresponding to the different choices of filters. The
extent to which a region is suppressed indicates its determined salience by AIM. Also shown (bottom middle and bottom right) is the output of an
alternative algorithm [17] for comparison. Regions that are non-salient are made to appear closer to white resulting in a cloudy or foggy appearance for
non-salient regions. Labels are as follows: jadeRGB: ICA based filters learned using the Jade algorithm [12], infomaxRGB: ICA based filters learned using
the extended infomax algorithm [11], Flat Gabor: A filter bank based on a standard Gabor based representation, Hierarchical Gabor: A filter bank based on
a hierarchical Gabor wavelet decomposition, log-Gabor: A filter bank constructed using log-Gabor filters, DoG: A filter bank built as the sum of circular
Difference of Gaussian filters arranged in an oriented pattern, infomaxTran: ICA based filters using the extended infomax algorithm on an alternative
colorspace (YCbCr).

Recall = TP/(TP + FN)

This measure reflects the tradeoff between relevance and
the proportion of positive cases retrieved.

Figure 2 depicts a representation of the saliency attributed
to different regions of a frame from one of the sequences
considered. The areas deemed non-salient by the algorithm
are less transparent and in effect are closer to white. This
then provides a depiction of the algorithms predictions
localized on the image under consideration. One can see
quickly from this image, that the qualitative differences
between the output of the algorithms under consideration are
significant. Each of the frames in figure 2 is labeled in yellow
with the algorithm that depicted output corresponds to. Not
shown is the output of the fasticaTran algorithm which is
very similar to the infomaxTran output. At first inspection, it
appears that the log-Gabor filters produce clearer localization
of people and vehicles in the scene and also that spatial
localization is much better than say the ICA based output. In
other high contrast regions (e.g. road markings) there is also
qualitative variability in the degree of attributed salience.

The DoG based filters also produce output that is appealing
from a qualitative perspective. A closer view of a region of
this frame is depicted in figure 3. The qualitative observation
of output corresponding to the complete set of aerial and
surveillance videos is in agreement with these observations.

To verify that these qualitative conclusions concerning
the filter outputs are correct, it is necessary to examine
quantitatively the extent to which the regions deemed salient
correspond to the people and cars labeled in the ground
truth. An example of the ground truth for one frame of the
evaluation appears in figure 4. To perform this quantitative
evaluation, a representative video was selected for each
of an approximately 45 degree view of the ground (as
shown in figure 2), as well as a birds-eye view from above.
Figure 5 demonstrates the ROC and Precision-Recall based
comparisons of the various filter bank choices across several
hundred frames of the video sequence. The algorithms are
labeled as follows:

1) jadeRGB: ICA based filters learned using the Jade
algorithm [15].

2) infomaxRGB: ICA based filters learned using the
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Figure 3. A depiction of the algorithmic determination of saliency attributed to the representation corresponding to the different choices of filters. The
extent to which a region is transparent indicates its determined salience by AIM. Regions heavily obscured by white are deemed non-salient by the
algorithm. Labels are as in figure 2.

Figure 4. A depiction of the ground truth used in the quantitative assessment for one frame of the 45 degrees test video sequence. Boxed areas indicate
areas where regions deemed as salient are present.

extended infomax algorithm [1].
3) Flat Gabor: A filter bank based on a standard Gabor

based representation.
4) Hierarchical Gabor: A filter bank based on a hierar-

chical Gabor wavelet decomposition.
5) Log-Gabor: A filter bank constructed using log-Gabor

filters.

6) DoG: A filter bank built as the sum of circular
Difference of Gaussian filters arranged in an oriented
pattern.

7) infomaxTran: ICA based filters using the extended
infomax algorithm on an alternative colorspace
(YCbCr).

8) fasticaTran: ICA based filters using the fastICA algo-
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Figure 5. Top: Curves for the quantitative evaluation corresponding to the 45 degree angle intersection video sequence. Bottom: Curves corresponding
to the birds-eye view video sequence. Left: ROC curves depicting the relative performance of the different algorithms. Right: Precision-Recall curves
depicting the relative performance of the algorithms under consideration. Labels are the same as those listed in figure 2.

rithm [18] on an alternative colorspace (YCbCr).

The top row of figure 5 corresponds to the 45 degree
angled video and the bottom row to the aerial view. On
the left of each column is the ROC curve for the video
under consideration and on the right is the Precision-Recall
curve. As can be seen, the representation under consideration
can appreciably affect algorithm performance. In general the
quantitative assessment agrees with the intuition drawn from
the qualitative assessment. As a whole, the log-Gabor filters
are the best option for their simplistic parametric nature,
and the quality of their output in the context of the algorithm
under consideration. This is perhaps not surprising consider-
ing that cells in the visual cortex of humans appear to have
a profile akin to log-Gabors and this conceivably yields a
more even sampling of the spectral domain. It is interesting

to note the apparently poor performance attributed to the
standard flat Gabor filters here. This is apparently due to
strong selectivity for certain frequency bands, notably on
the higher spatial frequency end in this case. It is also
conceivable that the performance difference might be smaller
using masks that are a more precise fit to the boundaries
of target items (i.e. not based on bounding boxes). In the
case of the ICA based filters, the form, and also spatial
localization can be poor. This is due in part to the fact that
these filters have steeper boundaries when compared to those
with a smoother Gaussian envelope that forms the spatially
localized component of the filter definitions.

IV. DISCUSSION

It is apparent from the results that the nature of early
visual filtering has an appreciable impact on the deter-
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mination of saliency. The intuition that derives from our
extensive qualitative experimentation suggests that the nature
of spectral sampling has a very important role in the determi-
nation of salient targets. From a system design perspective,
representation based on independent component analysis
(ICA) can be convenient since it allows the treatment of
intensity variations as well as chromatic content to be dealt
with using a single unified set of filters. On the other hand, in
the absence of a parametric form describing the interpretive
units involved in the system, it can be impossible to perform
certain operations (e.g. suppressing a specific frequency
band) without doing some further analysis first.

Owing to the 1/f structure of natural scenes, it is apparent
that the sampling produced by standard Gabor filters is
biased to certain radial frequencies determined by the filter
parameters. When coupled with postprocessing that is highly
non-linear, this bias can become exaggerated and lead to
significant performance differences; this is apparently the
case for the experimentation presented here. The results
corresponding to log-Gabor filters appear to correspond
more closely to targets of interest in a qualitative sense and
this may be verified quantitatively based on the performance
evaluation presented in this paper. Moreover, the fact that
log-Gabor filters arguably provide a better fit for visual
computation in the primate brain suggests that they may
have some especially desirable properties.

The non-linear postprocessing that is performed by the
model corresponds to a likelihood estimate based on a
Generalized Gaussian distribution (GGD) followed by a
logarithmic non-linearity. The probability density function
corresponding to the response of any Gabor-like filter is fit
well by a GGD. This implies that the strong sensitivity to
any weak frequency bias (in the standard Gabor as opposed
to the log-Gabor) is not isolated to the model at hand, but
will likely arise in any model for which there is a likelihood
estimate based on the response of a Gabor-like or bank
of Gabor-like filters. The implication of this is that all of
the issues discussed in this paper including the conclusions
drawn are not system specific, but rather are issues that are
deserving of close consideration in building any system that
involves that analysis of outputs of Gabor or similar filters.
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