
Words that almost commute

Daniel Gabric
School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1

Canada
dgabric@uwaterloo.ca

February 28, 2023

Abstract

The Hamming distance ham(u, v) between two equal-length words u, v is the num-
ber of positions where u and v differ. The words u and v are said to be conjugates if
there exist non-empty words x, y such that u = xy and v = yx. The smallest value
ham(xy, yx) can take on is 0, when x and y commute. But, interestingly, the next
smallest value ham(xy, yx) can take on is 2 and not 1. In this paper, we consider
conjugates u = xy and v = yx where ham(xy, yx) = 2. More specifically, we provide
an efficient formula to count the number h(n) of length-n words u = xy over a k-letter
alphabet that have a conjugate v = yx such that ham(xy, yx) = 2. We also provide
efficient formulae for other quantities closely related to h(n). Finally, we show that
h(n) grows erratically: cubically for n prime, but exponentially for n even.

1 Introduction

Let Σk denote the alphabet {0, 1, . . . , k − 1}. Let u and v be two words of equal length.
The Hamming distance ham(u, v) between u and v is defined to be the number of positions
where u and v differ [1]. For example, ham(four, five) = 3.

A word w is said to be a power if it can be written as w = zi for some word z where i ≥ 2.
Otherwise w is said to be primitive. For example, hotshots = (hots)2 is a power, but hots
is primitive. The words u and v are said to be conjugates (or v is a conjugate of u) if there
exist non-empty words x, y such that u = xy and v = yx. If ham(u, v) = ham(xy, yx) = 0,
then x and y are said to commute. If x and y are both non-empty, then v is said to be a
non-trivial conjugate of u. Let σ be the left-shift map, so that σi(u) = yx where u = xy and
|x| = i, where i is an integer with 0 ≤ i ≤ |u|. For example, any two of the words eat, tea,
and ate are conjugates because eat = σ(tea) = σ2(ate).
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Lyndon and Schützenberger [2] characterized all words x, y that commute. Alternatively,
they characterized all words u that have a non-trivial conjugate v such that ham(u, v) = 0.

Theorem 1 (Lyndon-Schützenberger [2]). Let u be a non-empty word. Then u = xy has a
non-trivial conjugate v = yx such that ham(xy, yx) = 0 if and only if there exists a word z,
and integers i, j ≥ 1 such that x = zi, y = zj, and u = v = zi+j.

Later, Fine andWilf [3] showed that one can achieve the forward implication of Theorem 1
with a weaker hypothesis. Namely, that xy and yx need not be equal, but only agree on the
first |x|+ |y| − gcd(|x|, |y|) terms.

Theorem 2 (Fine-Wilf [3]). Let x and y be non-empty words. If xy and yx agree on a prefix
of length at least |x|+ |y|−gcd(|x|, |y|), then there exists a word z, and integers i, j ≥ 1 such
that x = zi, y = zj, and xy = yx = zi+j.

Fine and Wilf also showed that the bound of |x| + |y| − gcd(|x|, |y|) is optimal, in the
sense that if xy and yx agree only on the first |x| + |y| − gcd(|x|, |y|) − 1 terms, then xy
need not equal yx. They demonstrated this by constructing words x, y of any length such
that xy and yx agree on the first |x| + |y| − gcd(|x|, |y|) − 1 terms and differ at position
|x|+ |y| − gcd(|x|+ |y|). We call pairs of words x, y of this form Fine-Wilf pairs.

These words have been shown to have a close relationship with the well-known finite
Sturmian words [4].

Example 3. We give some examples of words that display the optimality of the Fine-Wilf
result.
Let x = 000000010000 and y = 00000001. Then |x| = 12, |y| = 8, and gcd(|x|, |y|) = 4.

xy = 00000001000000000001

yx = 00000001000000010000

Let x = 010100101010 and y = 0101001. Then |x| = 12, |y| = 7, and gcd(|x|, |y|) = 1.

xy = 0101001010100101001

yx = 0101001010100101010

One remarkable property of these words is that they “almost” commute, in the sense
that xy and yx agree for as long a prefix as possible and differ in as few positions as possible.
See Lemma 5 for a proof of this property.

One might näıvely think that the smallest possible Hamming distance between xy and
yx after 0 is 1, but this is incorrect. Shallit [5] showed that ham(xy, yx) ̸= 1 for any words
x and y; see Lemma 4. Thus, after 0, the smallest possible Hamming distance between xy
and yx is 2. If ham(xy, yx) = 2, then we say x and y almost commute.

Lemma 4 (Shallit [5]). Let x and y be words. Then ham(xy, yx) ̸= 1.
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A similar concept, called the 2-error border, was introduced in a paper by Klavžar and
Shpectorov [6]. A word w is said to have a 2-error border of length i if there exists a length-i
prefix u of w, and a length-i suffix u′ of w such that w = ux = yu′ and ham(u, u′) = 2 for
some x, y. The 2-error border was originally introduced in an attempt to construct graphs
that have properties similar to n-dimensional hypercubes. The n-dimensional hypercube is a
graph that models Hamming distance between length-n binary words. See [7, 8, 9] for more
on 2-error borders.

In this paper, we characterize and count all words u that have a conjugate v such that
ham(u, v) = 2. As a result, we also characterize and count all pairs of words x, y that almost
commute.

Let n and i be integers such that n > i ≥ 1. Let H(n) denote the set of length-n
words u over Σk that have a conjugate v such that ham(u, v) = 2. Let h(n) = |H(n)|.
Let H(n, i) denote the set of length-n words u over Σk such that ham(u, σi(u)) = 2. Let
h(n, i) = |H(n, i)|.

The rest of the paper is structured as follows. In Section 2 we prove that Fine-Wilf pairs
almost commute. In Section 3 we characterize the words in H(n, i) and present a formula to
calculate h(n, i). In Section 4 we prove some properties of H(n, i) and H(n) that we make
use of in later sections. In Section 5 we present a formula to calculate h(n). In Section 6 we
count the number of length-n words u with exactly one conjugate such that ham(u, v) = 2.
In Section 7 we count the number of Lyndon words in H(n). Finally, in Section 8 we show
that h(n) grows erratically.

2 Fine-Wilf pairs almost commute

In this section we prove that Fine-Wilf pairs almost commute. This result appears without
proof in [10].

Lemma 5. Let x and y be non-empty words. Suppose xy and yx agree on a prefix of length
|x|+|y|−gcd(|x|, |y|)−1 but disagree at position |x|+|y|−gcd(|x|, |y|). Then ham(xy, yx) = 2.

Proof. The proof is by induction on |x|+ |y|. Suppose xy and yx agree on a prefix of length
|x| + |y| − gcd(|x|, |y|) − 1 but disagree at position |x| + |y| − gcd(|x|, |y|). Without loss of
generality, let |x| ≤ |y|.

First, we take care of the case when |x| = |y|, which also takes care of the base case
|x|+ |y| = 2. Since |x| = |y|, we have that gcd(|x|, |y|) = |x| = |y|. Therefore, x and y share
a prefix of length |x| + |y| − gcd(|x|, |y|) − 1 = |x| − 1 but disagree at position |x|. This
implies that ham(x, y) = 1. Thus ham(xy, yx) = 2 ham(x, y) = 2.

Suppose |x| < |y|. Then gcd(|x|, |y|) ≤ |x|. So |x| + |y| − gcd(|x|, |y|) − 1 ≥ |y| − 1.
Thus xy and yx must share a prefix of length ≥ |y| − 1. However, since |x| < |y|, we
have that x must then be a proper prefix of y. So write y = xt for some non-empty
word t. Then ham(xy, yx) = ham(xxt, xtx) = ham(xt, tx). Since xt, tx are suffixes of
xy, yx we have that xt and tx agree on the first |y| − gcd(|x|, |y|) − 1 terms and disagree
at position |y| − gcd(|x|, |y|). Clearly gcd(|x|, |y|) = gcd(|x|, |xt|) = gcd(|x|, |x| + |t|) =
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gcd(|x|, |t|), and |y|−gcd(|x|, |y|) = |x|+ |t|−gcd(|x|, |t|). Therefore xt and tx share a prefix
of length |x|+ |t|− gcd(|x|, |t|)− 1 and differ at position |x|+ |t|− gcd(|x|, |t|). By induction
ham(xt, tx) = 2, and thus ham(xy, yx) = 2.

3 Counting H(n, i)

In this section we characterize the words in H(n, i) and use this characterization to provide
an explicit formula for H(n, i).

Lemma 6. Let n, i be positive integers such that n > i. Let g = gcd(n, i). Let w be a
length-n word. Let w = x0x1 · · ·xn/g−1 where |xj| = g for all j, 0 ≤ j ≤ n/g − 1. Then
w ∈ H(n, i) iff there exist two distinct integers j1, j2, 0 ≤ j1 < j2 ≤ n/g − 1 such that
ham(xj1 , xj2) = 1 and xj = x(j+i/g) mod n/g for all j ̸= j1, j2, 0 ≤ j ≤ n/g − 1.

Proof. We write w = x0x1 · · · xn/g−1 where |xj| = g for all j, 0 ≤ j ≤ n/g − 1. Since g
divides i, we have that σi(w) = xi/g · · ·xn/g−1x0 · · ·xi/g−1.

=⇒: Suppose w ∈ H(n, i). Then

ham(w, σi(w)) = ham(x0x1 · · ·xn/g−1, xi/g · · ·xn/g−1x0 · · ·xi/g−1)

=

n/g−1∑
j=0

ham(xj, x(j+i/g) mod n/g)

= 2.

In order for the Hamming distance between w and σi(w) to be 2, we must have that either

• ham(xj, x(j+i/g) mod n/g) = 2 for exactly one j, 0 ≤ j ≤ n/g − 1; or

• ham(xj1 , x(j1+i/g) mod n/g) = 1 and ham(xj2 , x(j2+i/g) mod n/g) = 1 for two distinct integers
j1, j2, 0 ≤ j1 < j2 ≤ n/g − 1.

Suppose ham(xj, x(j+i/g) mod n/g) = 2 for some j, 0 ≤ j ≤ n/g − 1. Then it follows that
xp = x(p+i/g) mod n/g for all p ̸= j, 0 ≤ p ≤ n/g − 1. Since g = gcd(n, i), we have that

gcd(n/g, i/g) = 1. The additive order of i/g modulo n/g is n/g
gcd(n/g,i/g)

= n/g. Therefore, we
have that

x(j+i/g) mod n/g = x(j+2i/g) mod n/g = · · · = x(j+(n/g−1)i/g) mod n/g = xj

and ham(xj, x(j+i/g) mod n/g) = 2, a contradiction.
Suppose ham(xj1 , x(j1+i/g) mod n/g) = 1 and ham(xj2 , x(j2+i/g) mod n/g) = 1 for two distinct

integers j1, j2, 0 ≤ j1 < j2 ≤ n/g − 1. Then it follows that xj = x(j+i/g) mod n/g for all
j ̸= j1, j2, 0 ≤ j ≤ n/g− 1. Since the additive order of i/g modulo n/g is n/g, we have that
if we start at j1 and successively add i/g and take the result modulo n/g, then we will reach
every integer between 0 and n/g − 1. Therefore, we will reach j2 before we reach j1 again.
Thus, since xj = x(j+i/g) mod n/g for all j ̸= j1, j2, 0 ≤ j ≤ n/g − 1, we have that

x(j1+i/g) mod n/g = x(j1+2i/g) mod n/g = · · · = xj2 .
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But now we have ham(xj1 , x(j1+i/g) mod n/g) = 1 and x(j1+i/g) mod n/g = xj2 , which implies
ham(xj1 , xj2) = 1.

⇐=: Suppose there exist two distinct integers j1, j2, 0 ≤ j1 < j2 ≤ n/g − 1 such that
ham(xj1 , xj2) = 1 and xj = x(j+i/g) mod n/g for all j ̸= j1, j2, 0 ≤ j ≤ n/g − 1. Since the
additive order of i/g modulo n/g is n/g, we have that if we start at j1 and successively add
i/g modulo n/g, then we will reach every integer between 0 and n/g − 1. But this means
that we will reach j2 before we get to j1 again. Thus, we have that

x(j1+i/g) mod n/g = x(j1+2i/g) mod n/g = · · · = xj2 .

Similarly, if we start at j2 and successively add i/g modulo n/g we will reach j1 before
looping back to j2. So

x(j2+i/g) mod n/g = x(j2+2i/g) mod n/g = · · · = xj1 .

Therefore, we have that w ∈ H(n, i) since

ham(w, σi(w)) = ham(x0x1 · · ·xn/g−1, xi/g · · ·xn/g−1x0 · · ·xi/g−1)

=

n/g−1∑
j=0

ham(xj, x(j+i/g) mod n/g)

= ham(xj1 , x(j1+i/g) mod n/g) + ham(xj2 , x(j2+i/g) mod n/g)

= ham(xj1 , xj2) + ham(xj2 , xj1)

= 2.

Lemma 7. Let n, i be positive integers such that n > i. Then

h(n, i) =
1

2
kgcd(n,i)(k − 1)n

(
n

gcd(n, i)
− 1

)
.

Proof. Let w be a length-n word. Let g = gcd(n, i). We split up w into length-g blocks.
We write w = x0x1 · · ·xn/g−1 where |xj| = g for all j, 0 ≤ j ≤ n/g − 1. Lemma 6 gives a
complete characterization of H(n, i). Namely, the word w is in H(n, i) if and only if there
exist two distinct integers j1, j2, 0 ≤ j1 < j2 ≤ n/g − 1 such that ham(xj1 , xj2) = 1 and
xj = x(j+i/g) mod n/g for all j ̸= j1, j2, 0 ≤ j ≤ n/g − 1. Given j1, j2, xj1 , and xj2 , all xj for
j ̸= j1, j2, 0 ≤ j ≤ n/g − 1 are already determined.

There are

n/g−1∑
j2=1

j2−1∑
j1=0

1 =
1

2

n

g

(
n

g
− 1

)
choices for j1 and j2. There are kg options for xj1 . Considering that xj1 and xj2 differ in
exactly one position, there are g(k−1) choices for xj2 given xj1 . Putting everything together
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we have that

h(n, i) =

choices for j1 and j2︷ ︸︸ ︷
1

2

n

g

(
n

g
− 1

) choices for xj1︷︸︸︷
kg

choices for xj2
given xj1︷ ︸︸ ︷

g(k − 1)

=
1

2
kgcd(n,i)(k − 1)n

(
n

gcd(n, i)
− 1

)
.

Corollary 8. Let m,n ≥ 1 be integers. Then there are exactly

h(n+m,m) =
1

2
kgcd(n+m,m)(k − 1)(n+m)

(
n+m

gcd(n+m,m)
− 1

)
.

pairs of words (x, y) of length (m,n) such that ham(xy, yx) = 2.

4 Some useful properties

In this section we prove some properties of H(n, i) and H(n) that we use in later sections.

Lemma 9. Let u be a length-n word. Let i be an integer with 0 < i < n. If u ∈ H(n, i) then
u ∈ H(n, n− i).

Proof. Suppose i ≤ n/2. Then we can write u = xtz for some words t, z where |x| = |z| = i
and |t| = n− 2i. We have that ham(xtz, tzx) = ham(xt, tz) + ham(z, x) = 2. Consider the
word zxt. Clearly v = zxt is a conjugate of u = xtz such that ham(xtz, zxt) = ham(x, z) +
ham(tz, xt) = 2 where u = (xt)z and v = z(xt) with |xt| = n− i. Therefore u ∈ H(n, n− i).

Suppose i > n/2. Then we can write u = zty for some words t, z where |z| = |y| = n− i
and |t| = 2i − n. We have that ham(zty, yzt) = ham(z, y) + ham(ty, zt) = 2. Consider the
word tyz. Clearly v = tyz is a conjugate of u = zty such that ham(zty, tyz) = ham(zt, ty) +
ham(y, z) = 2 where u = z(ty) and v = (ty)z with |z| = n− i. Therefore u ∈ H(n, n− i).

Lemma 10. Let u be a length-n word. If u ∈ H(n), then ham(u, v) > 0 for any non-trivial
conjugate v of u.

Proof. We prove the contrapositive of the lemma statement. Namely, we prove that if there
exists a non-trivial conjugate v of u such that ham(u, v) = 0 then u ̸∈ H(n).

Suppose u = xy and v = yx for some non-empty words x, y. Then by Theorem 1 we have
that there exists a word z, and an integer i ≥ 2 such that u = v = zi. Let w be a conjugate of
u. Then w = (ts)i where z = st. So ham(u,w) = ham((st)i, (ts)i) = i ham(st, ts). If st = ts,
then ham(u,w) = 0. If st ̸= ts, then ham(st, ts) ≥ 2 (Lemma 4). Since ham(st, ts) ≥ 2 and
i ≥ 2, we have ham(u,w) ≥ 4. Thus u ̸∈ H(n).

Corollary 11. Let u be a length-n word. If u is a power, then u ̸∈ H(n).

Corollary 12. All words in H(n) are primitive.
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Lemma 13. Let u be a length-n word. Let i be an integer with 0 < i < n. If u ∈ H(n, i),
then any conjugate of u is also in H(n, i).

Proof. Suppose u ∈ H(n, i). Then ham(u, σi(u)) = 2. If we shift both u and σi(u) by
the same amount, then the symbols that are being compared to each other do not change.
Thus ham(σj(u), σi+j(u)) = 2 for all j ≥ 0. So any conjugate σj(u) of u must also be in
H(n, i).

5 Counting H(n)

Lemma 9 shows that H(n, i) = H(n, n− i), which in turn implies that h(n) ≤
∑⌊n/2⌋

i=1 h(n, i).
To make this inequality an equality we need to be able to account for those words that are
double-counted in the sum

∑⌊n/2⌋
i=1 h(n, i). In this section we resolve this problem and give

an exact formula for h(n). More specifically, we show that all words w that are in both
H(n, i) and H(n, j), for i ̸= j, must exhibit a certain regular structure that we can explicitly
describe. Then we use this structure result, in addition to the results from Section 3 and
Section 4, to give an exact formula for h(n).

Lemma 14. Let n, i, j be positive integers such that n ≥ 2i > 2j. Let g = gcd(n, i, j). Let
w be a length-n word. Then w ∈ H(n, i) and w ∈ H(n, j) if and only if there exists a word
u of length g, a word v of length g with ham(u, v) = 1, and a non-negative integer p < n/g
such that w = upvun/g−p−1.

Proof.
=⇒: The proof is by induction on |w| = n. Suppose w ∈ H(n, i) and w ∈ H(n, j). First, we
take care of the case when n = 2i, which also includes the base case n = 4, i = 2, j = 1.
Write w = xyx′y′ where |xy| = |x′y′| = i = n/2 and |x| = |x′| = j. Since w ∈ H(n, i),
we have that ham(xyx′y′, x′y′xy) = 2. This implies that ham(xy, x′y′) = 1. Furthermore, if
ham(xy, x′y′) = 1 then either ham(x, x′) = 1 or ham(y, y′) = 1.

Suppose ham(x, x′) = 1. Then y = y′. Since w ∈ H(n, j), we have ham(xyx′y, yx′yx) =
ham(xy, yx′) + ham(x′y, yx) = 2. Suppose ham(xy, yx′) = 0 or ham(x′y, yx) = 0. Both
cases imply that ham(xy, yx) = 1, which contradicts Lemma 4. Thus, we must have
ham(xy, yx′) = ham(x′y, yx) = 1. But this implies that ham(xy, yx) = 0 and ham(x′y, yx′) =
2 or ham(xy, yx) = 2 and ham(x′y, yx′) = 0. Without loss of generality, suppose ham(xy, yx) =
0. By Theorem 1, there exists a word s, and integers l,m ≥ 1 such that x = sl and y = sm.
Clearly |s| divides gcd(n/2, j) = gcd(n, n/2, j) = gcd(n, i, j) = g since it divides both
|x| = j and |xy| = i = n/2. Therefore, there exists a length-g word u such that x = uj/g and
y = u(i−j)/g. Since x and x′ differ in exactly one position, and x = uj/g, there exists a length-g
word v with ham(u, v) = 1, and a non-negative integer p′ < j/g such that x′ = up

′
vuj/g−p′−1.

Letting p = p′ + i/g = p′ + (n/2)/g, we have w = xyx′y = ui/gup
′
vuj/g−p′−1u(i−j)/g =

upvun/g−p−1.
Suppose ham(y, y′) = 1. Then x = x′. Since w ∈ H(n, j), we have ham(xyxy′, yxy′x) =

ham(xy, yx) + ham(xy′, y′x) = 2. By Lemma 4, we have that ham(xy, yx) ̸= 1 and
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ham(xy′, y′x) ̸= 1. So either ham(xy, yx) = 0 or ham(xy′, y′x) = 0. Without loss of
generality, suppose ham(xy, yx) = 0. As in the previous case when ham(x, x′) = 1, there
exists a length-g word u such that x = uj/g and y = u(i−j)/g. Since y and y′ differ in exactly
one position, there exists a length-g word v with ham(u, v) = 1, and a non-negative integer
p′ < (i− j)/g such that y′ = up

′
vu(i−j)/g−p′−1. Letting p = p′ + (i+ j)/g = p′ + (n/2 + j)/g,

we have w = xyxy′ = ui/guj/gup
′
vu(i−j)/g−p′−1 = upvun/g−p−1.

Now, we take care of the case when n > 2i. Write w = xyx′y′z for words x, y, x′, y′, z
where |xy| = |x′y′| = i, and |x| = |x′| = j. Since w ∈ H(n, i), we have that w and σi(w)
differ in exactly two positions j1 < j2. But n > 2i implies that either j2−j1 > i or j2−j1 ≤ i
and n−(j2−j1) > 2i−(j2−j1) ≥ i. In either case we have that there is a length-i contiguous
block, possibly occurring in the wraparound, where w and σi(w) match. This translates to
there being a length-2i block in w of the form tt where |t| = i. Additionally, we have that
σm(w) ∈ H(n, i) and σm(w) ∈ H(n, j) for allm ≥ 0 by Lemma 13. Therefore, we can assume
without loss of generality that w begins with this length-2i block (i.e., ham(xy, x′y′) = 0).

Suppose ham(xy, x′y′) = 0. Then ham(xyxyz, xyzxy) = ham(xyxyz, yxyzx) = 2.
Clearly ham(xyxyz, xyzxy) = ham(xyz, zxy) = 2, so xyz ∈ H(n− i, i). Now, either xy = yx
or xy ̸= yx. If xy = yx, then we clearly have ham(xyxyz, yxyzx) = ham(xyz, yzx) = 2.
Therefore, we have xyz ∈ H(n − i, j). Let g = gcd(n − i, i, j). We have that g =
gcd(n − i, i, j) = gcd(gcd(n − i, i), j) = gcd(gcd(n, i), j) = gcd(n, i, j). If n − i ≥ 2i > 2j,
then we can apply induction to xyz directly. By Lemma 9, we have that if xyz ∈ H(n− i, i)
and xyz ∈ H(n − i, j), then xyz ∈ H(n − i, n − 2i) and xyz ∈ H(n − i, n − i − j). If
n− i < 2i and n− i ≥ 2j, then n− i > 2(n− 2i) and gcd(n− i, n− 2i, j) = gcd(n, i, j) = g.
However, in this case we can have j = n− 2i, which we have to take care of separately since
it does not satisfy the inductive hypothesis. If n − i < 2j < 2i, then n − i > 2(n − i − j),
n− i > 2(n− 2i), and gcd(n− i, n− 2i, n− i− j) = gcd(n, i, j) = g.

Suppose j ̸= n − 2i. By induction there exists a word u of length g, a word v of
length g with ham(u, v) = 1, and a non-negative integer p′ < (n − i)/g such that xyz =
up

′
vu(n−i)/g−p′−1. Since xy = yx and g | gcd(i, j), it is clear that xy = ui/g. Then w =

xyxyz = up
′+i/gvu(n−i)/g−p′−1. Letting p = p′ + i/g, we have w = upvun/g−p−1.

Suppose j = n− 2i. Then w = xyxyz where |z| = |x| = n− 2i. Since w ∈ H(n, n− 2i),
we have ham(xyxyz, yxyzx) = ham(xy, yx)+ ham(xy, yz)+ ham(z, x) = 2. But xy = yx by
assumption. Thus ham(xy, yz) + ham(z, x) = 2, which is only true when ham(z, x) = 1. By
Theorem 1, there exists a word s, and integers l,m ≥ 1 such that x = sl and y = sm. Since
|s| divides both |x| = j = n− 2i and |xy| = i, we have |s| divides gcd(i, j) = gcd(i, n− 2i) =
gcd(n, i, n − 2i) = gcd(n, i, j) = g. Therefore, there exists a length-g word u such that x =
uj/g and y = u(i−j)/g. We also have ham(z, x) = 1, which implies that there exists a length-g
word v with ham(u, v) = 1, and a non-negative integer p′ < j/g such that z = up

′
vuj/g−p′−1.

Letting p = p′ + 2i/g, we have w = xyxyz = u2i/gup
′
vu(n−2i)/g−p′−1 = upvun/g−p−1.

If xy ̸= yx, then we must have ham(xy, yx) = 2. But since ham(xyxyz, yxyzx) = 2,
we must have ham(xyz, yzx) = 0. This means that xyz is a power, but we have already
demonstrated that xyz ∈ H(n− i, i). By Corollary 11, this is a contradiction.

⇐=: Let g = gcd(n, i, j). Suppose we can write w = upvun/g−p−1 where |u| = |v| = g, and
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ham(u, v) = 1. Since g | i, we can write

ham(w, σi(w)) = ham(upvun/g−p−1, up−i/gvun/g+i/g−p−1) = 2 ham(u, v) = 2

if p ≤ i/g, and

ham(w, σi(w)) = ham(upvun/g−p−1, un/g−i+pvup−i−1) = 2 ham(u, v) = 2

if p > i/g. Since g divides j as well, a similar argument works to show ham(w, σj(w)) = 2
as well. Therefore, w ∈ H(n, i) and w ∈ H(n, j).

Lemma 14 shows that any word w that is in H(n, i) and H(n, j) for j < i ≤ n/2 is of
Hamming distance 1 away from a power. Therefore, to count the number of such words, we
need a formula for the number of powers.

Clearly a word is a power if and only if it is not primitive. This implies that pk(n) =
kn − ψk(n) where ψk(n) is the number of length-n primitive words over a k-letter alphabet.
From Lothaire’s 1983 book [11, p. 9] we also have that

ψk(n) =
∑
d|n

µ(d)kn/d

where µ is the Möbius function.
Let H ′(n, i) denote the set of words w ∈ H(n, i) that are also in H(n, j) for some j < i.

Let h′(n, i) = |H ′(n, i)|.

Corollary 15. Let n, i be positive integers such that n ≥ 2i. Then

h′(n, i) =

{
n(k − 1)pk(i), if i | n;
n(k − 1)kgcd(n,i), otherwise.

Let H ′′(n, i) denote the set of words w ∈ H(n, i) such that w ̸∈ H(n, j) for all j < i. Let
h′′(n, i) = |H ′′(n, i)|.

Lemma 16. Let n, i be positive integers such that n > i. Then

h′′(n, i) =

{
1
2
n(k − 1)

(
kgcd(n,i)

(
n

gcd(n,i)
− 1

)
− 2pk(i)

)
, if i | n;

1
2
kgcd(n,i)(k − 1)n

(
n

gcd(n,i)
− 3

)
, otherwise.

Proof. Let w be a length-n word. The word w is in H ′′(n, i) precisely if it is in H(n, i)
but not in any H(n, j) for j < i. So computing h′′(n, i) reduces to computing the number
of length-n words that are in H(n, i) and H(n, j) for some j < i (i.e., h′(n, i)) and then
subtracting it from the number of words in H(n, i) (i.e., h(n, i)). Therefore

h′′(n, i) = h(n, i)− h′(n, i) =

{
1
2
n(k − 1)

(
kgcd(n,i)

(
n

gcd(n,i)
− 1

)
− 2pk(i)

)
, if i | n;

1
2
kgcd(n,i)(k − 1)n

(
n

gcd(n,i)
− 3

)
, otherwise.
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Theorem 17. Let n be an integer ≥ 2. Then

h(n) =

⌊n/2⌋∑
i=1

h′′(n, i).

Proof. Every word that is in H(n) must also be in H(n, i) for some integer i in the range
1 ≤ i ≤ n− 1. By Lemma 9 we have that every word that is in H(n, i) is also in H(n, n− i).
Therefore we only need to consider words in H(n, i) where i is an integer with i ≤ n− i =⇒

i ≤ n/2. Consider the quantity S =
⌊n/2⌋∑
i=1

h(n, i). Since any member of H(n) must also be a

member of H(n, i) for some i ≤ ⌊n/2⌋, we have that h(n) ≤ S. But any member of H(n, i)
may also be a member of H(n, j) for some j < i. These words are accounted for multiple
times in the sum S. To avoid double-counting we must count the number of words w that
are in H(n, i) but not in H(n, j) for any j < i. This quantity is exactly h′′(n, i). Therefore

h(n) =

⌊n/2⌋∑
i=1

h′′(n, i).

6 Exactly one conjugate

So far we have been interested in length-n words u that have at least one conjugate of
Hamming distance 2 away from u. But what about length-n words u that have exactly one
conjugate of Hamming distance 2 away from u? In this section we provide a formula for the
number h′′′(n) of length-n words u with exactly one conjugate v such that ham(u, v) = 2.

Let n and i be positive integers such that n > i. Let H ′′′(n) denote the set of length-n
words u over Σk that have exactly one conjugate v with ham(u, v) = 2. Let h′′′(n) = |H ′′′(n)|.
Let H ′′(n, i) denote the set of length-n words w such that w is in H(n, i) but is not in H(n, j)
for any j ̸= i. Let h′′(n, i) = |H ′′(n, i)|.

Suppose w ∈ H ′′′(n, i). Then by definition we have that w ∈ H(n, i) and w ̸∈ H(n, j)
for any j ̸= i. But by Lemma 9 we have that if w is in H(n, i) then it must also be in
H(n, n− i). So if i ̸= n− i, then w has at least two distinct conjugates of Hamming distance
2 away from it, namely σi(w) and σn−i(w). Therefore we have i = n− i. This implies that
n must be even, so H ′′′(2m + 1) = {} for all m ≥ 1. Since i = n− i =⇒ i = n/2, we have
that w ∈ H(n, n/2). However w cannot be in H(n, j) for any j ̸= n/2. Since any word in
H(n, j) is also in H(n, n− j), the condition of w ̸∈ H(n, j) for any j ̸= n/2 is equivalent to
w ̸∈ H(n, j) for any j with 1 ≤ j < n/2. But this is just the definition of H ′′(n, n/2). From
this we get the following theorem.

Theorem 18. Let n ≥ 1 be an integer. Then

h′′′(n) =

{
1
2
n(k − 1)(kn/2 − 2pk(n/2)), if n is even;

0, otherwise.
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7 Lyndon conjugates

A Lyndon word is a word that is lexicographically smaller than any of its non-trivial conju-
gates. In this section we count the number of Lyndon words in H(n).

Theorem 19. There are h(n)
n

Lyndon words in H(n).

Proof. Corollary 12 says that all members of H(n) are primitive and Lemma 13 says that if
a word is in H(n), then any conjugate of it is also in H(n). It is easy to verify that every

primitive word has exactly one Lyndon conjugate. Therefore exactly h(n)
n

words in H(n) are
Lyndon words.

8 Asymptotic behaviour of h(n)

In this section we show that h(n) grows erratically. We do this by demonstrating that h(n)
is a cubic polynomial for prime n, and that h(n) is bounded below by an exponential for
even n.

Lemma 20. Let n be a prime number. Then

h(n) =
1

4
k(k − 1)n(n2 − 4n+ 7).

Proof. Let n > 1 be a prime number. Since n is prime, we have that gcd(n, i) = 1 for all
integers i with 1 < i < n. Then

h(n) =

(n−1)/2∑
i=1

h′′(n, i)

=
1

2
k(k − 1)n(n− 1) +

(n−1)/2∑
i=2

1

2
kgcd(n,i)(k − 1)n

(
n

gcd(n, i)
− 3

)
=

1

2
k(k − 1)n(n− 1) +

(
n− 3

2

)
1

2
k(k − 1)n(n− 3)

=
1

4
k(k − 1)n(n2 − 4n+ 7).

Lemma 21. Let n > 1 be an integer. Then h(2n) ≥ nkn.

Proof. Since any word in H(2n, n) must also be in H(2n), we have that h(2n) ≥ h(2n, n).
From Lemma 7 we see that h(2n, n) = 1

2
kgcd(2n,n)(k− 1)2n

(
2n

gcd(2n,n)
− 1

)
= kn(k− 1)n. Since

k ≥ 2, we have that k − 1 ≥ 1. Therefore h(2n) ≥ kn(k − 1)n ≥ nkn for all n > 1.
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