Words that almost commute

Daniel Gabric
School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
dgabric@uwaterloo.ca

February 28, 2023

Abstract

The Hamming distance ham (u, v) between two equal-length words u, v is the number of positions where u and v differ. The words u and v are said to be conjugates if there exist non-empty words x, y such that $u=x y$ and $v=y x$. The smallest value ham $(x y, y x)$ can take on is 0 , when x and y commute. But, interestingly, the next smallest value $\operatorname{ham}(x y, y x)$ can take on is 2 and not 1 . In this paper, we consider conjugates $u=x y$ and $v=y x$ where $\operatorname{ham}(x y, y x)=2$. More specifically, we provide an efficient formula to count the number $h(n)$ of length- n words $u=x y$ over a k-letter alphabet that have a conjugate $v=y x$ such that $\operatorname{ham}(x y, y x)=2$. We also provide efficient formulae for other quantities closely related to $h(n)$. Finally, we show that $h(n)$ grows erratically: cubically for n prime, but exponentially for n even.

1 Introduction

Let Σ_{k} denote the alphabet $\{0,1, \ldots, k-1\}$. Let u and v be two words of equal length. The Hamming distance ham (u, v) between u and v is defined to be the number of positions where u and v differ [1]. For example, ham(four, five) $=3$.

A word w is said to be a power if it can be written as $w=z^{i}$ for some word z where $i \geq 2$. Otherwise w is said to be primitive. For example, hotshots $=(\text { hots })^{2}$ is a power, but hots is primitive. The words u and v are said to be conjugates (or v is a conjugate of u) if there exist non-empty words x, y such that $u=x y$ and $v=y x$. If $\operatorname{ham}(u, v)=\operatorname{ham}(x y, y x)=0$, then x and y are said to commute. If x and y are both non-empty, then v is said to be a non-trivial conjugate of u. Let σ be the left-shift map, so that $\sigma^{i}(u)=y x$ where $u=x y$ and $|x|=i$, where i is an integer with $0 \leq i \leq|u|$. For example, any two of the words eat, tea, and ate are conjugates because eat $=\sigma($ tea $)=\sigma^{2}$ (ate).

Lyndon and Schützenberger [2] characterized all words x, y that commute. Alternatively, they characterized all words u that have a non-trivial conjugate v such that ham $(u, v)=0$.

Theorem 1 (Lyndon-Schützenberger [2]). Let u be a non-empty word. Then $u=x y$ has a non-trivial conjugate $v=y x$ such that $\operatorname{ham}(x y, y x)=0$ if and only if there exists a word z, and integers $i, j \geq 1$ such that $x=z^{i}, y=z^{j}$, and $u=v=z^{i+j}$.

Later, Fine and Wilf [3] showed that one can achieve the forward implication of Theorem 1 with a weaker hypothesis. Namely, that $x y$ and $y x$ need not be equal, but only agree on the first $|x|+|y|-\operatorname{gcd}(|x|,|y|)$ terms.

Theorem 2 (Fine-Wilf [3]). Let x and y be non-empty words. If $x y$ and $y x$ agree on a prefix of length at least $|x|+|y|-\operatorname{gcd}(|x|,|y|)$, then there exists a word z, and integers $i, j \geq 1$ such that $x=z^{i}, y=z^{j}$, and $x y=y x=z^{i+j}$.

Fine and Wilf also showed that the bound of $|x|+|y|-\operatorname{gcd}(|x|,|y|)$ is optimal, in the sense that if $x y$ and $y x$ agree only on the first $|x|+|y|-\operatorname{gcd}(|x|,|y|)-1$ terms, then $x y$ need not equal $y x$. They demonstrated this by constructing words x, y of any length such that $x y$ and $y x$ agree on the first $|x|+|y|-\operatorname{gcd}(|x|,|y|)-1$ terms and differ at position $|x|+|y|-\operatorname{gcd}(|x|+|y|)$. We call pairs of words x, y of this form Fine-Wilf pairs.

These words have been shown to have a close relationship with the well-known finite Sturmian words [4].

Example 3. We give some examples of words that display the optimality of the Fine-Wilf result.
Let $x=000000010000$ and $y=00000001$. Then $|x|=12,|y|=8$, and $\operatorname{gcd}(|x|,|y|)=4$.

$$
\begin{aligned}
& x y=00000001000000000001 \\
& y x=00000001000000010000
\end{aligned}
$$

Let $x=010100101010$ and $y=0101001$. Then $|x|=12,|y|=7$, and $\operatorname{gcd}(|x|,|y|)=1$.

$$
\begin{aligned}
& x y=0101001010100101001 \\
& y x=0101001010100101010
\end{aligned}
$$

One remarkable property of these words is that they "almost" commute, in the sense that $x y$ and $y x$ agree for as long a prefix as possible and differ in as few positions as possible. See Lemma 5 for a proof of this property.

One might naïvely think that the smallest possible Hamming distance between $x y$ and $y x$ after 0 is 1 , but this is incorrect. Shallit [5] showed that ham $(x y, y x) \neq 1$ for any words x and y; see Lemma 4. Thus, after 0 , the smallest possible Hamming distance between $x y$ and $y x$ is 2 . If $\operatorname{ham}(x y, y x)=2$, then we say x and y almost commute.

Lemma 4 (Shallit [5]). Let x and y be words. Then $\operatorname{ham}(x y, y x) \neq 1$.

A similar concept, called the 2 -error border, was introduced in a paper by Klavžar and Shpectorov [6]. A word w is said to have a 2 -error border of length i if there exists a length- i prefix u of w, and a length- i suffix u^{\prime} of w such that $w=u x=y u^{\prime}$ and $\operatorname{ham}\left(u, u^{\prime}\right)=2$ for some x, y. The 2 -error border was originally introduced in an attempt to construct graphs that have properties similar to n-dimensional hypercubes. The n-dimensional hypercube is a graph that models Hamming distance between length- n binary words. See [7, 8, 9] for more on 2-error borders.

In this paper, we characterize and count all words u that have a conjugate v such that $\operatorname{ham}(u, v)=2$. As a result, we also characterize and count all pairs of words x, y that almost commute.

Let n and i be integers such that $n>i \geq 1$. Let $H(n)$ denote the set of length- n words u over Σ_{k} that have a conjugate v such that $\operatorname{ham}(u, v)=2$. Let $h(n)=|H(n)|$. Let $H(n, i)$ denote the set of length- n words u over Σ_{k} such that $\operatorname{ham}\left(u, \sigma^{i}(u)\right)=2$. Let $h(n, i)=|H(n, i)|$.

The rest of the paper is structured as follows. In Section 2 we prove that Fine-Wilf pairs almost commute. In Section 3 we characterize the words in $H(n, i)$ and present a formula to calculate $h(n, i)$. In Section 4 we prove some properties of $H(n, i)$ and $H(n)$ that we make use of in later sections. In Section 5 we present a formula to calculate $h(n)$. In Section 6 we count the number of length- n words u with exactly one conjugate such that ham $(u, v)=2$. In Section 7 we count the number of Lyndon words in $H(n)$. Finally, in Section 8 we show that $h(n)$ grows erratically.

2 Fine-Wilf pairs almost commute

In this section we prove that Fine-Wilf pairs almost commute. This result appears without proof in [10].

Lemma 5. Let x and y be non-empty words. Suppose xy and $y x$ agree on a prefix of length $|x|+|y|-\operatorname{gcd}(|x|,|y|)-1$ but disagree at position $|x|+|y|-\operatorname{gcd}(|x|,|y|)$. Then ham $(x y, y x)=2$.

Proof. The proof is by induction on $|x|+|y|$. Suppose $x y$ and $y x$ agree on a prefix of length $|x|+|y|-\operatorname{gcd}(|x|,|y|)-1$ but disagree at position $|x|+|y|-\operatorname{gcd}(|x|,|y|)$. Without loss of generality, let $|x| \leq|y|$.

First, we take care of the case when $|x|=|y|$, which also takes care of the base case $|x|+|y|=2$. Since $|x|=|y|$, we have that $\operatorname{gcd}(|x|,|y|)=|x|=|y|$. Therefore, x and y share a prefix of length $|x|+|y|-\operatorname{gcd}(|x|,|y|)-1=|x|-1$ but disagree at position $|x|$. This implies that $\operatorname{ham}(x, y)=1$. Thus ham $(x y, y x)=2 \operatorname{ham}(x, y)=2$.

Suppose $|x|<|y|$. Then $\operatorname{gcd}(|x|,|y|) \leq|x|$. So $|x|+|y|-\operatorname{gcd}(|x|,|y|)-1 \geq|y|-1$. Thus $x y$ and $y x$ must share a prefix of length $\geq|y|-1$. However, since $|x|<|y|$, we have that x must then be a proper prefix of y. So write $y=x t$ for some non-empty word t. Then $\operatorname{ham}(x y, y x)=\operatorname{ham}(x x t, x t x)=\operatorname{ham}(x t, t x)$. Since $x t, t x$ are suffixes of $x y, y x$ we have that $x t$ and $t x$ agree on the first $|y|-\operatorname{gcd}(|x|,|y|)-1$ terms and disagree at position $|y|-\operatorname{gcd}(|x|,|y|)$. Clearly $\operatorname{gcd}(|x|,|y|)=\operatorname{gcd}(|x|,|x t|)=\operatorname{gcd}(|x|,|x|+|t|)=$
$\operatorname{gcd}(|x|,|t|)$, and $|y|-\operatorname{gcd}(|x|,|y|)=|x|+|t|-\operatorname{gcd}(|x|,|t|)$. Therefore $x t$ and $t x$ share a prefix of length $|x|+|t|-\operatorname{gcd}(|x|,|t|)-1$ and differ at position $|x|+|t|-\operatorname{gcd}(|x|,|t|)$. By induction $\operatorname{ham}(x t, t x)=2$, and thus $\operatorname{ham}(x y, y x)=2$.

3 Counting $H(n, i)$

In this section we characterize the words in $H(n, i)$ and use this characterization to provide an explicit formula for $H(n, i)$.
Lemma 6. Let n, i be positive integers such that $n>i$. Let $g=\operatorname{gcd}(n, i)$. Let w be a length- n word. Let $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all $j, 0 \leq j \leq n / g-1$. Then $w \in H(n, i)$ iff there exist two distinct integers $j_{1}, j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$ such that $\operatorname{ham}\left(x_{j_{1}}, x_{j_{2}}\right)=1$ and $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$.
Proof. We write $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all $j, 0 \leq j \leq n / g-1$. Since g divides i, we have that $\sigma^{i}(w)=x_{i / g} \cdots x_{n / g-1} x_{0} \cdots x_{i / g-1}$.
\Longrightarrow : Suppose $w \in H(n, i)$. Then

$$
\begin{aligned}
\operatorname{ham}\left(w, \sigma^{i}(w)\right) & =\operatorname{ham}\left(x_{0} x_{1} \cdots x_{n / g-1}, x_{i / g} \cdots x_{n / g-1} x_{0} \cdots x_{i / g-1}\right) \\
& =\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right) \\
& =2 .
\end{aligned}
$$

In order for the Hamming distance between w and $\sigma^{i}(w)$ to be 2, we must have that either

- $\operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$ for exactly one $j, 0 \leq j \leq n / g-1$; or
- $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=1$ and $\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$ for two distinct integers $j_{1}, j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$.

Suppose $\operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$ for some $j, 0 \leq j \leq n / g-1$. Then it follows that $x_{p}=x_{(p+i / g) \bmod n / g}$ for all $p \neq j, 0 \leq p \leq n / g-1$. Since $g=\operatorname{gcd}(n, i)$, we have that $\operatorname{gcd}(n / g, i / g)=1$. The additive order of i / g modulo n / g is $\frac{n / g}{\operatorname{gcd}(n / g, i / g)}=n / g$. Therefore, we have that

$$
x_{(j+i / g) \bmod n / g}=x_{(j+2 i / g) \bmod n / g}=\cdots=x_{(j+(n / g-1) i / g) \bmod n / g}=x_{j}
$$

and $\operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right)=2$, a contradiction.
Suppose $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=1$ and $\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right)=1$ for two distinct integers $j_{1}, j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$. Then it follows that $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$. Since the additive order of i / g modulo n / g is n / g, we have that if we start at j_{1} and successively add i / g and take the result modulo n / g, then we will reach every integer between 0 and $n / g-1$. Therefore, we will reach j_{2} before we reach j_{1} again. Thus, since $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$, we have that

$$
x_{\left(j_{1}+i / g\right) \bmod n / g}=x_{\left(j_{1}+2 i / g\right) \bmod n / g}=\cdots=x_{j_{2}} .
$$

But now we have $\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)=1$ and $x_{\left(j_{1}+i / g\right) \bmod n / g}=x_{j_{2}}$, which implies $\operatorname{ham}\left(x_{j_{1}}, x_{j_{2}}\right)=1$.
\Longleftarrow : Suppose there exist two distinct integers $j_{1}, j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$ such that $\operatorname{ham}\left(x_{j_{1}}, x_{j_{2}}\right)=1$ and $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$. Since the additive order of i / g modulo n / g is n / g, we have that if we start at j_{1} and successively add i / g modulo n / g, then we will reach every integer between 0 and $n / g-1$. But this means that we will reach j_{2} before we get to j_{1} again. Thus, we have that

$$
x_{\left(j_{1}+i / g\right) \bmod n / g}=x_{\left(j_{1}+2 i / g\right) \bmod n / g}=\cdots=x_{j_{2}} .
$$

Similarly, if we start at j_{2} and successively add i / g modulo n / g we will reach j_{1} before looping back to j_{2}. So

$$
x_{\left(j_{2}+i / g\right) \bmod n / g}=x_{\left(j_{2}+2 i / g\right) \bmod n / g}=\cdots=x_{j_{1}} .
$$

Therefore, we have that $w \in H(n, i)$ since

$$
\begin{aligned}
\operatorname{ham}\left(w, \sigma^{i}(w)\right) & =\operatorname{ham}\left(x_{0} x_{1} \cdots x_{n / g-1}, x_{i / g} \cdots x_{n / g-1} x_{0} \cdots x_{i / g-1}\right) \\
& =\sum_{j=0}^{n / g-1} \operatorname{ham}\left(x_{j}, x_{(j+i / g) \bmod n / g}\right) \\
& =\operatorname{ham}\left(x_{j_{1}}, x_{\left(j_{1}+i / g\right) \bmod n / g}\right)+\operatorname{ham}\left(x_{j_{2}}, x_{\left(j_{2}+i / g\right) \bmod n / g}\right) \\
& =\operatorname{ham}\left(x_{j_{1}}, x_{j_{2}}\right)+\operatorname{ham}\left(x_{j_{2}}, x_{j_{1}}\right) \\
& =2 .
\end{aligned}
$$

Lemma 7. Let n, i be positive integers such that $n>i$. Then

$$
h(n, i)=\frac{1}{2} k^{\operatorname{gcd}(n, i)}(k-1) n\left(\frac{n}{\operatorname{gcd}(n, i)}-1\right) .
$$

Proof. Let w be a length- n word. Let $g=\operatorname{gcd}(n, i)$. We split up w into length- g blocks. We write $w=x_{0} x_{1} \cdots x_{n / g-1}$ where $\left|x_{j}\right|=g$ for all $j, 0 \leq j \leq n / g-1$. Lemma 6 gives a complete characterization of $H(n, i)$. Namely, the word w is in $H(n, i)$ if and only if there exist two distinct integers $j_{1}, j_{2}, 0 \leq j_{1}<j_{2} \leq n / g-1$ such that ham $\left(x_{j_{1}}, x_{j_{2}}\right)=1$ and $x_{j}=x_{(j+i / g) \bmod n / g}$ for all $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$. Given $j_{1}, j_{2}, x_{j_{1}}$, and $x_{j_{2}}$, all x_{j} for $j \neq j_{1}, j_{2}, 0 \leq j \leq n / g-1$ are already determined.

There are

$$
\sum_{j_{2}=1}^{n / g-1} \sum_{j_{1}=0}^{j_{2}-1} 1=\frac{1}{2} \frac{n}{g}\left(\frac{n}{g}-1\right)
$$

choices for j_{1} and j_{2}. There are k^{g} options for $x_{j_{1}}$. Considering that $x_{j_{1}}$ and $x_{j_{2}}$ differ in exactly one position, there are $g(k-1)$ choices for $x_{j_{2}}$ given $x_{j_{1}}$. Putting everything together
we have that

$$
\begin{aligned}
h(n, i) & =\overbrace{\frac{1}{2} \frac{n}{g}\left(\frac{n}{g}-1\right)}^{\text {choices for } j_{1} \text { and } j_{2}} \overbrace{k^{g}}^{\text {choices for }} \overbrace{g(k-1)}^{x_{j_{1}} \text { choices for } x_{j_{2}} \text { given } x_{j_{1}}} \\
& =\frac{1}{2} k^{\operatorname{gcd}(n, i)}(k-1) n\left(\frac{n}{\operatorname{gcd}(n, i)}-1\right) .
\end{aligned}
$$

Corollary 8. Let $m, n \geq 1$ be integers. Then there are exactly

$$
h(n+m, m)=\frac{1}{2} k^{\operatorname{gcd}(n+m, m)}(k-1)(n+m)\left(\frac{n+m}{\operatorname{gcd}(n+m, m)}-1\right) .
$$

pairs of words (x, y) of length (m, n) such that ham $(x y, y x)=2$.

4 Some useful properties

In this section we prove some properties of $H(n, i)$ and $H(n)$ that we use in later sections.
Lemma 9. Let u be a length-n word. Let i be an integer with $0<i<n$. If $u \in H(n, i)$ then $u \in H(n, n-i)$.

Proof. Suppose $i \leq n / 2$. Then we can write $u=x t z$ for some words t, z where $|x|=|z|=i$ and $|t|=n-2 i$. We have that $\operatorname{ham}(x t z, t z x)=\operatorname{ham}(x t, t z)+\operatorname{ham}(z, x)=2$. Consider the word $z x t$. Clearly $v=z x t$ is a conjugate of $u=x t z \operatorname{such}$ that $\operatorname{ham}(x t z, z x t)=\operatorname{ham}(x, z)+$ $\operatorname{ham}(t z, x t)=2$ where $u=(x t) z$ and $v=z(x t)$ with $|x t|=n-i$. Therefore $u \in H(n, n-i)$.

Suppose $i>n / 2$. Then we can write $u=z t y$ for some words t, z where $|z|=|y|=n-i$ and $|t|=2 i-n$. We have that $\operatorname{ham}(z t y, y z t)=\operatorname{ham}(z, y)+\operatorname{ham}(t y, z t)=2$. Consider the word tyz. Clearly $v=t y z$ is a conjugate of $u=z t y$ such that $\operatorname{ham}(z t y, t y z)=\operatorname{ham}(z t, t y)+$ $\operatorname{ham}(y, z)=2$ where $u=z(t y)$ and $v=(t y) z$ with $|z|=n-i$. Therefore $u \in H(n, n-i)$.

Lemma 10. Let u be a length-n word. If $u \in H(n)$, then $\operatorname{ham}(u, v)>0$ for any non-trivial conjugate v of u.

Proof. We prove the contrapositive of the lemma statement. Namely, we prove that if there exists a non-trivial conjugate v of u such that $\operatorname{ham}(u, v)=0$ then $u \notin H(n)$.

Suppose $u=x y$ and $v=y x$ for some non-empty words x, y. Then by Theorem 1 we have that there exists a word z, and an integer $i \geq 2$ such that $u=v=z^{i}$. Let w be a conjugate of u. Then $w=(t s)^{i}$ where $z=s t$. So ham $(u, w)=\operatorname{ham}\left((s t)^{i},(t s)^{i}\right)=i \operatorname{ham}(s t, t s)$. If $s t=t s$, then $\operatorname{ham}(u, w)=0$. If $s t \neq t s$, then $\operatorname{ham}(s t, t s) \geq 2$ (Lemma 4). Since ham $(s t, t s) \geq 2$ and $i \geq 2$, we have $\operatorname{ham}(u, w) \geq 4$. Thus $u \notin H(n)$.

Corollary 11. Let u be a length-n word. If u is a power, then $u \notin H(n)$.
Corollary 12. All words in $H(n)$ are primitive.

Lemma 13. Let u be a length-n word. Let i be an integer with $0<i<n$. If $u \in H(n, i)$, then any conjugate of u is also in $H(n, i)$.

Proof. Suppose $u \in H(n, i)$. Then $\operatorname{ham}\left(u, \sigma^{i}(u)\right)=2$. If we shift both u and $\sigma^{i}(u)$ by the same amount, then the symbols that are being compared to each other do not change. Thus $\operatorname{ham}\left(\sigma^{j}(u), \sigma^{i+j}(u)\right)=2$ for all $j \geq 0$. So any conjugate $\sigma^{j}(u)$ of u must also be in $H(n, i)$.

5 Counting $H(n)$

Lemma 9 shows that $H(n, i)=H(n, n-i)$, which in turn implies that $h(n) \leq \sum_{i=1}^{\lfloor n / 2\rfloor} h(n, i)$. To make this inequality an equality we need to be able to account for those words that are double-counted in the sum $\sum_{i=1}^{\lfloor n / 2\rfloor} h(n, i)$. In this section we resolve this problem and give an exact formula for $h(n)$. More specifically, we show that all words w that are in both $H(n, i)$ and $H(n, j)$, for $i \neq j$, must exhibit a certain regular structure that we can explicitly describe. Then we use this structure result, in addition to the results from Section 3 and Section 4, to give an exact formula for $h(n)$.

Lemma 14. Let n, i, j be positive integers such that $n \geq 2 i>2 j$. Let $g=\operatorname{gcd}(n, i, j)$. Let w be a length-n word. Then $w \in H(n, i)$ and $w \in H(n, j)$ if and only if there exists a word u of length g, a word v of length g with $\operatorname{ham}(u, v)=1$, and a non-negative integer $p<n / g$ such that $w=u^{p} v u^{n / g-p-1}$.

Proof.
\Longrightarrow : The proof is by induction on $|w|=n$. Suppose $w \in H(n, i)$ and $w \in H(n, j)$. First, we take care of the case when $n=2 i$, which also includes the base case $n=4, i=2, j=1$. Write $w=x y x^{\prime} y^{\prime}$ where $|x y|=\left|x^{\prime} y^{\prime}\right|=i=n / 2$ and $|x|=\left|x^{\prime}\right|=j$. Since $w \in H(n, i)$, we have that $\operatorname{ham}\left(x y x^{\prime} y^{\prime}, x^{\prime} y^{\prime} x y\right)=2$. This implies that ham $\left(x y, x^{\prime} y^{\prime}\right)=1$. Furthermore, if $\operatorname{ham}\left(x y, x^{\prime} y^{\prime}\right)=1$ then either $\operatorname{ham}\left(x, x^{\prime}\right)=1$ or $\operatorname{ham}\left(y, y^{\prime}\right)=1$.

Suppose $\operatorname{ham}\left(x, x^{\prime}\right)=1$. Then $y=y^{\prime}$. Since $w \in H(n, j)$, we have ham $\left(x y x^{\prime} y, y x^{\prime} y x\right)=$ $\operatorname{ham}\left(x y, y x^{\prime}\right)+\operatorname{ham}\left(x^{\prime} y, y x\right)=2$. Suppose $\operatorname{ham}\left(x y, y x^{\prime}\right)=0$ or $\operatorname{ham}\left(x^{\prime} y, y x\right)=0$. Both cases imply that $\operatorname{ham}(x y, y x)=1$, which contradicts Lemma 4. Thus, we must have $\operatorname{ham}\left(x y, y x^{\prime}\right)=\operatorname{ham}\left(x^{\prime} y, y x\right)=1$. But this implies that ham $(x y, y x)=0$ and $\operatorname{ham}\left(x^{\prime} y, y x^{\prime}\right)=$ 2 or $\operatorname{ham}(x y, y x)=2$ and $\operatorname{ham}\left(x^{\prime} y, y x^{\prime}\right)=0$. Without loss of generality, suppose ham $(x y, y x)=$ 0 . By Theorem 1, there exists a word s, and integers $l, m \geq 1$ such that $x=s^{l}$ and $y=s^{m}$. Clearly $|s|$ divides $\operatorname{gcd}(n / 2, j)=\operatorname{gcd}(n, n / 2, j)=\operatorname{gcd}(n, i, j)=g$ since it divides both $|x|=j$ and $|x y|=i=n / 2$. Therefore, there exists a length- g word u such that $x=u^{j / g}$ and $y=u^{(i-j) / g}$. Since x and x^{\prime} differ in exactly one position, and $x=u^{j / g}$, there exists a length- g word v with $\operatorname{ham}(u, v)=1$, and a non-negative integer $p^{\prime}<j / g$ such that $x^{\prime}=u^{p^{\prime}} v u^{j / g-p^{\prime}-1}$. Letting $p=p^{\prime}+i / g=p^{\prime}+(n / 2) / g$, we have $w=x y x^{\prime} y=u^{i / g} u^{p^{\prime}} v u^{j / g-p^{\prime}-1} u^{(i-j) / g}=$ $u^{p} v u^{n / g-p-1}$.

Suppose $\operatorname{ham}\left(y, y^{\prime}\right)=1$. Then $x=x^{\prime}$. Since $w \in H(n, j)$, we have ham $\left(x y x y^{\prime}, y x y^{\prime} x\right)=$ $\operatorname{ham}(x y, y x)+\operatorname{ham}\left(x y^{\prime}, y^{\prime} x\right)=2$. By Lemma 4, we have that $\operatorname{ham}(x y, y x) \neq 1$ and
$\operatorname{ham}\left(x y^{\prime}, y^{\prime} x\right) \neq 1$. So either $\operatorname{ham}(x y, y x)=0$ or $\operatorname{ham}\left(x y^{\prime}, y^{\prime} x\right)=0$. Without loss of generality, suppose $\operatorname{ham}(x y, y x)=0$. As in the previous case when $\operatorname{ham}\left(x, x^{\prime}\right)=1$, there exists a length g word u such that $x=u^{j / g}$ and $y=u^{(i-j) / g}$. Since y and y^{\prime} differ in exactly one position, there exists a length- g word v with $\operatorname{ham}(u, v)=1$, and a non-negative integer $p^{\prime}<(i-j) / g$ such that $y^{\prime}=u^{p^{\prime}} v u^{(i-j) / g-p^{\prime}-1}$. Letting $p=p^{\prime}+(i+j) / g=p^{\prime}+(n / 2+j) / g$, we have $w=x y x y^{\prime}=u^{i / g} u^{j / g} u^{p^{\prime}} v u^{(i-j) / g-p^{\prime}-1}=u^{p} v u^{n / g-p-1}$.

Now, we take care of the case when $n>2 i$. Write $w=x y x^{\prime} y^{\prime} z$ for words $x, y, x^{\prime}, y^{\prime}, z$ where $|x y|=\left|x^{\prime} y^{\prime}\right|=i$, and $|x|=\left|x^{\prime}\right|=j$. Since $w \in H(n, i)$, we have that w and $\sigma^{i}(w)$ differ in exactly two positions $j_{1}<j_{2}$. But $n>2 i$ implies that either $j_{2}-j_{1}>i$ or $j_{2}-j_{1} \leq i$ and $n-\left(j_{2}-j_{1}\right)>2 i-\left(j_{2}-j_{1}\right) \geq i$. In either case we have that there is a length- i contiguous block, possibly occurring in the wraparound, where w and $\sigma^{i}(w)$ match. This translates to there being a length- $2 i$ block in w of the form $t t$ where $|t|=i$. Additionally, we have that $\sigma^{m}(w) \in H(n, i)$ and $\sigma^{m}(w) \in H(n, j)$ for all $m \geq 0$ by Lemma 13. Therefore, we can assume without loss of generality that w begins with this length- $2 i$ block (i.e., $\operatorname{ham}\left(x y, x^{\prime} y^{\prime}\right)=0$).

Suppose $\operatorname{ham}\left(x y, x^{\prime} y^{\prime}\right)=0$. Then ham $(x y x y z, x y z x y)=\operatorname{ham}(x y x y z, y x y z x)=2$. Clearly ham $(x y x y z, x y z x y)=\operatorname{ham}(x y z, z x y)=2$, so $x y z \in H(n-i, i)$. Now, either $x y=y x$ or $x y \neq y x$. If $x y=y x$, then we clearly have ham $(x y x y z, y x y z x)=\operatorname{ham}(x y z, y z x)=2$. Therefore, we have $x y z \in H(n-i, j)$. Let $g=\operatorname{gcd}(n-i, i, j)$. We have that $g=$ $\operatorname{gcd}(n-i, i, j)=\operatorname{gcd}(\operatorname{gcd}(n-i, i), j)=\operatorname{gcd}(\operatorname{gcd}(n, i), j)=\operatorname{gcd}(n, i, j)$. If $n-i \geq 2 i>2 j$, then we can apply induction to $x y z$ directly. By Lemma 9, we have that if $x y z \in H(n-i, i)$ and $x y z \in H(n-i, j)$, then $x y z \in H(n-i, n-2 i)$ and $x y z \in H(n-i, n-i-j)$. If $n-i<2 i$ and $n-i \geq 2 j$, then $n-i>2(n-2 i)$ and $\operatorname{gcd}(n-i, n-2 i, j)=\operatorname{gcd}(n, i, j)=g$. However, in this case we can have $j=n-2 i$, which we have to take care of separately since it does not satisfy the inductive hypothesis. If $n-i<2 j<2 i$, then $n-i>2(n-i-j)$, $n-i>2(n-2 i)$, and $\operatorname{gcd}(n-i, n-2 i, n-i-j)=\operatorname{gcd}(n, i, j)=g$.

Suppose $j \neq n-2 i$. By induction there exists a word u of length g, a word v of length g with $\operatorname{ham}(u, v)=1$, and a non-negative integer $p^{\prime}<(n-i) / g$ such that $x y z=$ $u^{p^{\prime}} v u^{(n-i) / g-p^{\prime}-1}$. Since $x y=y x$ and $g \mid \operatorname{gcd}(i, j)$, it is clear that $x y=u^{i / g}$. Then $w=$ $x y x y z=u^{p^{\prime}+i / g} v u^{(n-i) / g-p^{\prime}-1}$. Letting $p=p^{\prime}+i / g$, we have $w=u^{p} v u^{n / g-p-1}$.

Suppose $j=n-2 i$. Then $w=x y x y z$ where $|z|=|x|=n-2 i$. Since $w \in H(n, n-2 i)$, we have $\operatorname{ham}(x y x y z, y x y z x)=\operatorname{ham}(x y, y x)+\operatorname{ham}(x y, y z)+\operatorname{ham}(z, x)=2$. But $x y=y x$ by assumption. Thus ham $(x y, y z)+\operatorname{ham}(z, x)=2$, which is only true when ham $(z, x)=1$. By Theorem 1, there exists a word s, and integers $l, m \geq 1$ such that $x=s^{l}$ and $y=s^{m}$. Since $|s|$ divides both $|x|=j=n-2 i$ and $|x y|=i$, we have $|s|$ divides $\operatorname{gcd}(i, j)=\operatorname{gcd}(i, n-2 i)=$ $\operatorname{gcd}(n, i, n-2 i)=\operatorname{gcd}(n, i, j)=g$. Therefore, there exists a length- g word u such that $x=$ $u^{j / g}$ and $y=u^{(i-j) / g}$. We also have ham $(z, x)=1$, which implies that there exists a length- g word v with $\operatorname{ham}(u, v)=1$, and a non-negative integer $p^{\prime}<j / g$ such that $z=u^{p^{\prime}} v u^{j / g-p^{\prime}-1}$. Letting $p=p^{\prime}+2 i / g$, we have $w=x y x y z=u^{2 i / g} u^{p^{\prime}} v u^{(n-2 i) / g-p^{\prime}-1}=u^{p} v u^{n / g-p-1}$.

If $x y \neq y x$, then we must have $\operatorname{ham}(x y, y x)=2$. But since $\operatorname{ham}(x y x y z, y x y z x)=2$, we must have $\operatorname{ham}(x y z, y z x)=0$. This means that $x y z$ is a power, but we have already demonstrated that $x y z \in H(n-i, i)$. By Corollary 11, this is a contradiction.
\Longleftarrow : Let $g=\operatorname{gcd}(n, i, j)$. Suppose we can write $w=u^{p} v u^{n / g-p-1}$ where $|u|=|v|=g$, and
$\operatorname{ham}(u, v)=1$. Since $g \mid i$, we can write

$$
\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\operatorname{ham}\left(u^{p} v u^{n / g-p-1}, u^{p-i / g} v u^{n / g+i / g-p-1}\right)=2 \operatorname{ham}(u, v)=2
$$

if $p \leq i / g$, and

$$
\operatorname{ham}\left(w, \sigma^{i}(w)\right)=\operatorname{ham}\left(u^{p} v u^{n / g-p-1}, u^{n / g-i+p} v u^{p-i-1}\right)=2 \operatorname{ham}(u, v)=2
$$

if $p>i / g$. Since g divides j as well, a similar argument works to show $\operatorname{ham}\left(w, \sigma^{j}(w)\right)=2$ as well. Therefore, $w \in H(n, i)$ and $w \in H(n, j)$.

Lemma 14 shows that any word w that is in $H(n, i)$ and $H(n, j)$ for $j<i \leq n / 2$ is of Hamming distance 1 away from a power. Therefore, to count the number of such words, we need a formula for the number of powers.

Clearly a word is a power if and only if it is not primitive. This implies that $p_{k}(n)=$ $k^{n}-\psi_{k}(n)$ where $\psi_{k}(n)$ is the number of length- n primitive words over a k-letter alphabet. From Lothaire's 1983 book [11, p. 9] we also have that

$$
\psi_{k}(n)=\sum_{d \mid n} \mu(d) k^{n / d}
$$

where μ is the Möbius function.
Let $H^{\prime}(n, i)$ denote the set of words $w \in H(n, i)$ that are also in $H(n, j)$ for some $j<i$. Let $h^{\prime}(n, i)=\left|H^{\prime}(n, i)\right|$.

Corollary 15. Let n, i be positive integers such that $n \geq 2 i$. Then

$$
h^{\prime}(n, i)= \begin{cases}n(k-1) p_{k}(i), & \text { if } i \mid n \\ n(k-1) k^{\operatorname{gcd}(n, i)}, & \text { otherwise }\end{cases}
$$

Let $H^{\prime \prime}(n, i)$ denote the set of words $w \in H(n, i)$ such that $w \notin H(n, j)$ for all $j<i$. Let $h^{\prime \prime}(n, i)=\left|H^{\prime \prime}(n, i)\right|$.

Lemma 16. Let n, i be positive integers such that $n>i$. Then

$$
h^{\prime \prime}(n, i)= \begin{cases}\frac{1}{2} n(k-1)\left(k^{\operatorname{gcd}(n, i)}\left(\frac{n}{\operatorname{gcd}(n, i)}-1\right)-2 p_{k}(i)\right), & \text { if } i \mid n ; \\ \frac{1}{2} k^{\operatorname{gcd}(n, i)}(k-1) n\left(\frac{n}{\operatorname{gcd}(n, i)}-3\right), & \text { otherwise } .\end{cases}
$$

Proof. Let w be a length- n word. The word w is in $H^{\prime \prime}(n, i)$ precisely if it is in $H(n, i)$ but not in any $H(n, j)$ for $j<i$. So computing $h^{\prime \prime}(n, i)$ reduces to computing the number of length- n words that are in $H(n, i)$ and $H(n, j)$ for some $j<i$ (i.e., $\left.h^{\prime}(n, i)\right)$ and then subtracting it from the number of words in $H(n, i)$ (i.e., $h(n, i)$). Therefore

$$
h^{\prime \prime}(n, i)=h(n, i)-h^{\prime}(n, i)= \begin{cases}\frac{1}{2} n(k-1)\left(k^{\operatorname{gcd}(n, i)}\left(\frac{n}{\operatorname{gcd}(n, i)}-1\right)-2 p_{k}(i)\right), & \text { if } i \mid n \\ \frac{1}{2} k^{\operatorname{gcd}(n, i)}(k-1) n\left(\frac{n}{\operatorname{gcd}(n, i)}-3\right), & \text { otherwise } .\end{cases}
$$

Theorem 17. Let n be an integer ≥ 2. Then

$$
h(n)=\sum_{i=1}^{\lfloor n / 2\rfloor} h^{\prime \prime}(n, i) .
$$

Proof. Every word that is in $H(n)$ must also be in $H(n, i)$ for some integer i in the range $1 \leq i \leq n-1$. By Lemma 9 we have that every word that is in $H(n, i)$ is also in $H(n, n-i)$. Therefore we only need to consider words in $H(n, i)$ where i is an integer with $i \leq n-i \Longrightarrow$ $i \leq n / 2$. Consider the quantity $S=\sum_{i=1}^{\lfloor n / 2\rfloor} h(n, i)$. Since any member of $H(n)$ must also be a member of $H(n, i)$ for some $i \leq\lfloor n / 2\rfloor$, we have that $h(n) \leq S$. But any member of $H(n, i)$ may also be a member of $H(n, j)$ for some $j<i$. These words are accounted for multiple times in the sum S. To avoid double-counting we must count the number of words w that are in $H(n, i)$ but not in $H(n, j)$ for any $j<i$. This quantity is exactly $h^{\prime \prime}(n, i)$. Therefore

$$
h(n)=\sum_{i=1}^{\lfloor n / 2\rfloor} h^{\prime \prime}(n, i) .
$$

6 Exactly one conjugate

So far we have been interested in length- n words u that have at least one conjugate of Hamming distance 2 away from u. But what about length n words u that have exactly one conjugate of Hamming distance 2 away from u ? In this section we provide a formula for the number $h^{\prime \prime \prime}(n)$ of length- n words u with exactly one conjugate v such that ham $(u, v)=2$.

Let n and i be positive integers such that $n>i$. Let $H^{\prime \prime \prime}(n)$ denote the set of length- n words u over Σ_{k} that have exactly one conjugate v with $\operatorname{ham}(u, v)=2$. Let $h^{\prime \prime \prime}(n)=\left|H^{\prime \prime \prime}(n)\right|$. Let $H^{\prime \prime}(n, i)$ denote the set of length- n words w such that w is in $H(n, i)$ but is not in $H(n, j)$ for any $j \neq i$. Let $h^{\prime \prime}(n, i)=\left|H^{\prime \prime}(n, i)\right|$.

Suppose $w \in H^{\prime \prime \prime}(n, i)$. Then by definition we have that $w \in H(n, i)$ and $w \notin H(n, j)$ for any $j \neq i$. But by Lemma 9 we have that if w is in $H(n, i)$ then it must also be in $H(n, n-i)$. So if $i \neq n-i$, then w has at least two distinct conjugates of Hamming distance 2 away from it, namely $\sigma^{i}(w)$ and $\sigma^{n-i}(w)$. Therefore we have $i=n-i$. This implies that n must be even, so $H^{\prime \prime \prime}(2 m+1)=\{ \}$ for all $m \geq 1$. Since $i=n-i \Longrightarrow i=n / 2$, we have that $w \in H(n, n / 2)$. However w cannot be in $H(n, j)$ for any $j \neq n / 2$. Since any word in $H(n, j)$ is also in $H(n, n-j)$, the condition of $w \notin H(n, j)$ for any $j \neq n / 2$ is equivalent to $w \notin H(n, j)$ for any j with $1 \leq j<n / 2$. But this is just the definition of $H^{\prime \prime}(n, n / 2)$. From this we get the following theorem.
Theorem 18. Let $n \geq 1$ be an integer. Then

$$
h^{\prime \prime \prime}(n)= \begin{cases}\frac{1}{2} n(k-1)\left(k^{n / 2}-2 p_{k}(n / 2)\right), & \text { if } n \text { is even } ; \\ 0, & \text { otherwise } .\end{cases}
$$

7 Lyndon conjugates

A Lyndon word is a word that is lexicographically smaller than any of its non-trivial conjugates. In this section we count the number of Lyndon words in $H(n)$.

Theorem 19. There are $\frac{h(n)}{n}$ Lyndon words in $H(n)$.
Proof. Corollary 12 says that all members of $H(n)$ are primitive and Lemma 13 says that if a word is in $H(n)$, then any conjugate of it is also in $H(n)$. It is easy to verify that every primitive word has exactly one Lyndon conjugate. Therefore exactly $\frac{h(n)}{n}$ words in $H(n)$ are Lyndon words.

8 Asymptotic behaviour of $h(n)$

In this section we show that $h(n)$ grows erratically. We do this by demonstrating that $h(n)$ is a cubic polynomial for prime n, and that $h(n)$ is bounded below by an exponential for even n.

Lemma 20. Let n be a prime number. Then

$$
h(n)=\frac{1}{4} k(k-1) n\left(n^{2}-4 n+7\right) .
$$

Proof. Let $n>1$ be a prime number. Since n is prime, we have that $\operatorname{gcd}(n, i)=1$ for all integers i with $1<i<n$. Then

$$
\begin{aligned}
h(n) & =\sum_{i=1}^{(n-1) / 2} h^{\prime \prime}(n, i) \\
& =\frac{1}{2} k(k-1) n(n-1)+\sum_{i=2}^{(n-1) / 2} \frac{1}{2} k^{\operatorname{gcd}(n, i)}(k-1) n\left(\frac{n}{\operatorname{gcd}(n, i)}-3\right) \\
& =\frac{1}{2} k(k-1) n(n-1)+\left(\frac{n-3}{2}\right) \frac{1}{2} k(k-1) n(n-3) \\
& =\frac{1}{4} k(k-1) n\left(n^{2}-4 n+7\right) .
\end{aligned}
$$

Lemma 21. Let $n>1$ be an integer. Then $h(2 n) \geq n k^{n}$.
Proof. Since any word in $H(2 n, n)$ must also be in $H(2 n)$, we have that $h(2 n) \geq h(2 n, n)$. From Lemma 7 we see that $h(2 n, n)=\frac{1}{2} k^{\operatorname{gcd}(2 n, n)}(k-1) 2 n\left(\frac{2 n}{\operatorname{gcd}(2 n, n)}-1\right)=k^{n}(k-1) n$. Since $k \geq 2$, we have that $k-1 \geq 1$. Therefore $h(2 n) \geq k^{n}(k-1) n \geq n k^{n}$ for all $n>1$.

References

[1] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical Journal, 29(2):147-160, 1950.
[2] R. C. Lyndon and M. P. Schützenberger. The equation $a^{M}=b^{N} c^{P}$ in a free group. Michigan Mathematical Journal, 9(4):289-298, 1962.
[3] Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings of the American Mathematical Society, 16(1):109-114, 1965.
[4] Aldo de Luca and Filippo Mignosi. Some combinatorial properties of Sturmian words. Theoretical Computer Science, 136(2):361-385, 1994.
[5] Jeffrey Shallit. Hamming distance for conjugates. Discrete Mathematics, 309(12):41974199, 2009.
[6] Sandi Klavžar and Sergey Shpectorov. Asymptotic number of isometric generalized Fibonacci cubes. European Journal of Combinatorics, 33(2):220-226, February 2012.
[7] Jianxin Wei. The structures of bad words. European Journal of Combinatorics, 59:204214, 2017.
[8] Jianxin Wei, Yujun Yang, and Xuena Zhu. A characterization of non-isometric binary words. European Journal of Combinatorics, 78:121-133, 2019.
[9] Marie-Pierre Béal and Maxime Crochemore. Checking whether a word is Hammingisometric in linear time, July 2021. arXiv:2106.10541.
[10] Jeffrey Shallit. Fifty Years of Fine and Wilf. Talk presented at the Vrije Universiteit, Amsterdam, November 2015.
[11] M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading, Mass., 1983.

