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Abstract. We consider a certain natural generalization of de Bruijn
words, and use it to compute the exact maximum state complexity for
the language consisting of the conjugates of a single word. In other words,
we determine the state complexity of cyclic shift on languages consisting
of a single word.

1 Introduction

Let x, y be words. We say x and y are conjugates if one is a cyclic shift of the
other; equivalently, if there exist words u, v such that x = uv and y = vu. For
example, the English words listen and enlist are conjugates.

The set of all conjugates of a word x is denoted by C(x). Thus, for example,
C(eat) = {eat, tea, ate}. We also write C(L) for the set of all conjugates of
elements of the language L.

For a regular language L let sc(L) denote the state complexity of L: the
number of states in the smallest complete DFA accepting L. State complexity
is sometimes also called quotient complexity [5]. The state complexity of the
cyclic shift operation L→ C(L) for arbitrary regular languages L was studied in
Maslov’s pioneering 1970 paper [17]. More recently, Jirásková and Okhotin [14]
improved Maslov’s bound, and Jirásek and Jirásková studied the state complex-
ity of the conjugates of prefix-free languages [13].

In this note we investigate the state complexity of the finite language C(x),
over all words x of length N . In other words, we determine the state complexity
of cyclic shift on languages consisting of a single word. Clearly sc(C(x)) achieves
its minimum — namely, N + 2 — at words of the form aN , where a is a single
letter. By considering random words, it seems likely that sc(C(x)) = O(N2).

Our main result makes this precise:
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Theorem 1. Let Σk be an alphabet of cardinality k ≥ 2, and let N ≥ 1 be an
integer. Define r = blogkNc and v = (kr+1 − 1)/(k − 1). Then

max
w∈Σn

k

sc(C(w)) = 2v +N(N − 2r − 1) + 1 .

Furthermore, we characterize those words x achieving this maximum.
Our theorem depends on a certain natural generalization of de Bruijn words,

of independent interest, which is introduced in the next section.

2 Generalized de Bruijn words

De Bruijn words (also called de Bruijn sequences) have a long history [8,16,10,3,4],
and have been extremely well studied [9,18]. Let Σk denote the k-letter alpha-
bet {0, 1, . . . , k−1}. Traditionally, there are two distinct ways of thinking about
these words: for integers k ≥ 2, n ≥ 1 they are

(a) the words w having each word of length n over Σk exactly once as a factor;
or

(b) the words w having each word of length n over Σk exactly once as a factor,
when w is considered as a “circular word”, or “necklace”, where the word
“wraps around” at the end back to the beginning.

For example, for k = 2 and n = 4, the word

0000111101100101000

is an example of the first interpretation and

0000111101100101

is an example of the second.
In this paper, we are concerned with the second (circular) interpretation of de

Bruijn words, and we write D(k, n) for the set of all such words. Obviously, such
words exist only for lengths of the form kn. Is there a sensible way to generalize
this class of words so that one could speak fruitfully of (generalized) de Bruijn
words of every length?

One natural way to do so is to use the notion of subword complexity (also
called factor complexity or just complexity). For 0 ≤ i ≤ N let γi(w) denote the
number of distinct length-i factors of the word w ∈ ΣN

k (considered circularly).
For all words w, there is a natural upper bound on γi(w) for 0 ≤ i ≤ N , as
follows:

γi(w) ≤ min(ki, N). (1)

This is immediate, since there are at most ki words of length i over Σk, and there
are at most N positions where a word could begin in w (considered circularly).
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Ordinary de Bruijn words are then precisely those words w of length kn for
which γn(w) = kn. But even more is true: w ∈ D(k, n) also achieves the upper
bound in (1) for all i ≤ kn. To see this, note that if i ≤ n, then every word of
length i occurs as a prefix of some word of length n, and every word of length
n is guaranteed to appear in w. On the other hand, all kn (circular) factors of
each length i ≥ n are distinct, because their length-n prefixes are all distinct.

This motivates the following definition:

Definition 1. A word x of length N over a k-letter alphabet is said to be a
generalized de Bruijn word if γi(x) = min(ki, N) for all 0 ≤ i ≤ N .

Table 1 gives the lexicographically least de Bruijn words for a two-letter
alphabet, for lengths 1 to 31, and the number of such words (counted up to cyclic
shift). This forms sequence A317586 in the On-Line Encyclopedia of Integer
Sequences (OEIS) [20]. The second author has computed these numbers up to
N = 63.

We point out an alternative characterization of our generalized de Bruijn
words.

Proposition 1. A word w ∈ ΣN
k is a generalized de Bruijn word iff both of the

following hold:

(a) γr(w) = kr; and

(b) γr+1(w) = N ,

where r = blogkNc.

Proof. A generalized de Bruijn word trivially has these properties. An argument
similar to the discussion before Definition 1 shows that the two properties imply
the bound in Eq. (1). ut

The main result of this section is the following.

Theorem 2. For all integers k ≥ 2 and N ≥ 1 there exists a generalized de
Bruijn word of length N over a k-letter alphabet.

Proof. For k = 2 the proof can be found in [19], although strangely it is not
explicitly stated anywhere in the paper. (Lemma 3 implies it.)

For k > 2 we can derive this result from a paper by Lempel [15]. Lempel
proved that for all k ≥ 2, n ≥ 1, N ≤ kn, there exists a circular word w =
w(k, n,N) of length N for which the factors of size n are distinct. (Also see
[11,6].) However, as stated, this result is not strong enough for our purposes. For
example, there are circular words, such as 000101 of length 6, having 6 distinct
factors of length 4, but only 3 distinct factors of length 2. For our purposes, then,
we need a stronger version of the result, which can nevertheless be obtained from
a further analysis of Lempel’s proof.

http://oeis.org/A317586
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N lexicographically least generalized number of
binary de Bruijn word of length N such words

1 0 2
2 01 1
3 001 2
4 0011 1
5 00011 2
6 000111 3
7 0001011 4
8 00010111 2
9 000010111 4
10 0000101111 3
11 00001011101 6
12 000010100111 13
13 0000100110111 12
14 00001001101111 20
15 000010011010111 32
16 0000100110101111 16
17 00000100110101111 32
18 000001001101011111 36
19 0000010100110101111 68
20 00000100101100111101 141
21 000001000110100101111 242
22 0000010001101001011111 407
23 00000100011001110101111 600
24 000001000110010101101111 898
25 0000010001100101011011111 1440
26 00000100011001010011101111 1812
27 000001000110010100111011111 2000
28 0000010001100101001110101111 2480
29 00000100011001010011101011111 2176
30 000001000110010110100111011111 2816
31 0000010001100101001110101101111 4096

Table 1. Generalized de Bruijn words

An Eulerian graph is a directed graph in which, for each vertex v, the indegree
of v is equal to the outdegree of v. By a closed chain we mean a sequence of
edges (a, v1), (v1, v2), (v2, v3), . . . , (vn−1, a), where each edge is distinct, but
vertices may be repeated. Each closed chain forms an Eulerian graph and each
connected Eulerian graph admits a closed chain containing all its edges.

Let Gnk be the k-ary de Bruijn graph of order n. This is a directed graph
where the vertices are the words of length n, and edges join a word x to a word
y if x = at and y = tb for some letters a, b and a word t. So every vertex of Gnk
has k incoming edges, and k outgoing edges, and therefore the underlying graph
Gnk is regular of degree 2k. By Proposition 1, building a generalized de Bruijn
word of length N = kn + j, where 0 ≤ j ≤ (k − 1)kn, over a k-letter alphabet
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then amounts to constructing a closed chain of length N in Gnk that visits every
vertex.

One of Lempel’s main results [15, Theorem 1] states that such a closed chain
exists, but does not mention explicitly whether it visits every vertex. In the
proof, the chain is obtained by constructing a connected Eulerian graph using
[15, Lemma 6]. Now, the analysis of the proof of [15, Lemma 6] shows that the
constructed Eulerian graph is not only connected (which is the explicit concern
of the lemma) but also spanning. The closed chain is eventually obtained as a
complement of a graph G (denoted as Tp in [15]), where G is an Eulerian graph
contained in Gnk such that the degree of each vertex in G is at most 2(k − 1).
Therefore, its complement is obviously spanning. ut

Remark 1. We have not been able to find this precise notion of generalized de
Bruijn word in the literature anywhere, although there are some papers that
come very close. For example, Iványi [12] considered the analogue of Eq. (1) for
ordinary (non-circular) words. He called a word w supercomplex if the analogue
of the upper bound (1) is attained not only for w, but also for all prefixes of w.
However, binary supercomplex words do not exist past length 9. The third author
also considered the analogue of Eq. (1) for ordinary words [19]. However, Lemma
3 of that paper actually implies the existence of our generalized (circular) de
Bruijn words of every length over a binary alphabet, although this was not stated
explicitly. Anisiu, Blázsik, and Kása [2] discussed a related concept: namely,
those length-N words w for which max1≤i≤N ρi(w) = maxx∈ΣN

k
max1≤i≤N ρi(x)

where ρi(w) denotes the number of distinct length-i factors of w (here considered
in the ordinary sense, not circularly). Also see [7].

We now count the total number of factors of a generalized de Bruijn word.
This is a generalization of Theorem 2 of [19] to all k ≥ 2, adapted for the case
of circular words.

Proposition 2. If w ∈ ΣN
k is a generalized de Bruijn word, then∑

0≤i≤N

γi(w) =
kr+1 − 1

k − 1
+N(N − r),

where r = blogkNc.

Proof. We have ∑
0≤i≤N

γi(w) =
∑

0≤i≤N

min(ki, N)

=
∑

0≤i≤r

ki +
∑

r<i≤N

N

=
kr+1 − 1

k − 1
+N(N − r).

ut
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3 State complexity

We start with a general upper bound on state complexity.

Theorem 3. Let Σ be an alphabet of cardinality k ≥ 2 and let L ⊆ ΣN . Define
m = |L|, r = blogkmc and v = (kr+1 − 1)/(k − 1). If N ≥ 2r + 1 then sc(L) ≤
2v +m(N − 2r − 1) + 1.

Proof. A level is a set of all nodes at a particular distance from the root. The
complete k-ary tree of r+ 1 levels therefore corresponds to words of length ≤ r,
and the total number of nodes in this tree is 1 + k + · · ·+ kr = kr+1−1

k−1 .

The language L can be accepted by a DFA with the following topology: there
is a complete k-ary tree of r+ 1 levels rooted at the initial state pε. At the very
next level there are at most m nodes, and these nodes form the roots of at most
m chains of N − 2r − 1 nodes each. These chains need not be disjoint, but will
be in the worst case. At the end, there is another complete k-ary tree of r + 1
levels culminating in a single accepting state. Finally, there is also a single non-
accepting state that captures all transitions not yet defined. The total number
of states is therefore 2v +m(N − 2r − 1) + 1.

More formally, define

X = Σ≤r ∪ {x : r < |x| < N − r − 1 and x is a prefix of an element of L}
Y = {y : |y| = N − r − 1 and y is a prefix of an element of L }

The states of our DFA are d, a “dead” state; px, for x ∈ X; and sz, for all z
with |z| ≤ r. The states px correspond to prefixes of words of L and the states
sz correspond to suffixes of words of L.

The initial state is pε.

The transitions are given by δ(px, a) = pxa for x ∈ X and a ∈ Σ and
δ(py, a) = sz, if y ∈ Y and yaz ∈ L; δ(sav, a) = sv for v ∈ Σ<i and a ∈ Σ. All
other transitions go to d.

Finally, the unique final state is sε. ut

This construction is illustrated in Figure 1 for k = 2, N = 12, m = 10, r = 3,
v = 15, N − 2r − 1 = 5, and

L = {000010100000, 000101100010, 011110100001, 100110011111, 101011110111,

110100100110, 110101010011, 110110101101, 111001100101, 111110110100}.
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Fig. 1. Example of the construction

As a corollary, we now get an upper bound on sc(C(x)):

Corollary 1. If x is a word of length N over a k-letter alphabet, with k ≥ 2,
then

sc(C(x)) ≤ 2v +N(N − 2r − 1) + 1,

where r = blogk nc and v = (kr+1 − 1)/(k − 1).

Proof. Let x be a word of length N , and let L = C(x). Set m = |L| ≤ N ,
r = blogkNc and v = (kr+1− 1)/(k− 1). The inequality N ≥ 2r+ 1 holds in all
cases except k = 2 and n = 2; this case can be checked separately. Theorem 3
therefore yields sc(L) ≤ 2v +N(N − 2r − 1) + 1, as desired. ut

It now remains to prove that there exist words that achieve this upper bound.
In fact, such words are exactly the generalized de Bruijn words defined in Sec-
tion 2.

Theorem 4. A length-N word x over a k-letter alphabet satisfies

sc(C(x)) = 2v +N(N − 2r − 1) + 1,

where r = blogkNc and v = (kr+1 − 1)/(k − 1) iff x is a generalized de Bruijn
word.

Proof. Suppose x is a generalized de Bruijn word. We first show that there are
2v + N(N − 2r − 1) + 1 inequivalent words for the Myhill-Nerode equivalence
relation R associated with C(x). This will show sc(C(x)) ≥ 2v+N(N−2r−1)+1
and hence, by Corollary 1, that sc(C(x)) = 2v +N(N − 2r − 1) + 1.
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Representatives of the Myhill-Nerode classes can be classified as follows:

(a) all the words of length ≤ r;
(b) all the factors of conjugates of x of length `, for r < ` < N − r;
(c) for each word w of length ≤ r, the lexicographically least factor z of C(x)

of length N − r for which zw ∈ C(x).

(d) the single equivalence class corresponding to words not in C(x).

There are v words in (a), and v words in (c), there are N(N − 2r− 1) words
in (b), and one word in (d).

We need to see that these are all inequivalent. Since all the words in C(x) are
of length N , no two factors of different lengths can be equivalent. It therefore
suffices to examine pairs of words of identical length.

In group (a), let y, z be two distinct words of length j ≤ r. Since x, considered
circularly, contains all factors of length r = blogkNc, it contains y and z as
factors. Let yy′ (resp., zz′) be a conjugate of x with prefix y (resp., z). Then
|y′| = |z′| = N − j ≥ r + 1. If both yz′ and zz′ occur in C(x), we would have
two separate occurrences of z′ in x (considered circularly), which is impossible
since x is of length N and has N distinct factors of length N − j (considered
circularly). So yz′ 6∈ C(x) and y, z are inequivalent under Myhill-Nerode. This
gives v = (kr+1 − 1)/(k − 1) equivalence classes.

In group (b), let y, z be two distinct factors of C(x) (considered circularly)
of length j with r < j < N − r. Since x is of length N and contains N distinct
factors of length r, the first r symbols of y (resp., z) uniquely determine the
position of y (resp., z) within x (considered as a circular word). So there is a
unique y′ such that yy′ ∈ C(x), and similarly, there is a unique z′ such that
zz′ ∈ C(x). Just as in case (a), since |y′| = |z′| ≥ r+ 1, we see that y′ 6= z′. This
gives N(N − 2r) equivalence classes.

In group (c), for each word t of length ≤ r, let xt be the lexicographically least
word of length n− r such that xtt ∈ C(x). (We know such a word exists because
each such t is a factor of x, considered circularly.) Let t, u be distinct words of
length j. Then since |xt| ≥ r + 1, the word xt occurs in exactly one location in
x, considered circularly, and there it must be followed by t. So xtu 6∈ C(x), so xt
and xu are inequivalent under Myhill-Nerode. This gives v = (kr+1 − 1)/(k− 1)
equivalence classes.

Now let us prove the reverse direction. Suppose x is such that sc(C(x)) = 2v+
N(N−2r−1)+1. Then from the upper bound in Corollary 1 and the construction
of Theorem 3 from which it is derived, we know that all the words corresponding
to the states of the automaton in Theorem 3 are pairwise inequivalent under
Myhill-Nerode. But there are kr such words of length r and N such words of
length r+ 1. Hence, by Proposition 1, we have that x is a generalized de Bruijn
word. ut

For k = 2 the maximum state complexity of C(x) over length-N words x is
given in Table 2 for 1 ≤ N ≤ 10. It is sequence A316936 in the OEIS [20].

http://oeis.org/A316936
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N maxx∈ΣN
2

sc(C(x))

1 3
2 5
3 7
4 11
5 15
6 21
7 29
8 39
9 49
10 61

Table 2. Maximum state complexity of conjugates of binary words of length N

4 Final comments

We do not currently know an accurate asymptotic expression for the number of
generalized de Bruijn words of length N , except in few simple cases. If N = kn,
then it follows from known results [1] that this number is (counted up to cyclic

shift) (k!)k
n−1

/kn.
Thus far we represented generalized de Bruijn words of length kn+j as closed

chains in Gnk that visit each vertex. However, in the case of the ordinary de
Bruijn word, it is well known that it is more convenient to represent such a word
as an Eulerian path in the graph Gn−1k . This exploits a natural correspondence
between edges of Gn−1k and vertices of Gnk . This point of view helps to understand
generalized de Bruijn words of length kn+1. They correspond to Eulerian paths
in Gn−1k where one edge is doubled. It is straightforward to see that the only
edge which can be doubled so that the resulting graph remains Eulerian is a
loop. Therefore, each generalized de Bruijn word of length kn + 1 is obtained
from an ordinary de Bruijn word of length kn by replacing a factor an−1 with an

where a is a single letter. For k = 2, it follows that the number of such words is
22

n−1

/2n−1. A similar argument yields the same number of generalized de Bruijn
words of length 2n − 1.

Already for kn ± 2 these kinds of considerations become very complex. We
leave this as a challenging open problem.
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