
Ranking and unranking bordered and unbordered words

Daniel Gabric
Department of Math/Stats
University of Winnipeg
Winnipeg, MB R3B 2E9

Canada
d.gabric@uwinnipeg.ca

Abstract

A border of a word w is a word that is both a non-empty proper prefix and suffix of
w. If w has a border, then it is said to be bordered ; otherwise, it is said to be unbordered.
The main results of this paper are the first algorithms to rank and unrank length-n
bordered and unbordered words over a k-letter alphabet. We show that, under the
unit-cost RAM model, ranking bordered and unbordered words can be done in O(kn3)
time using O(n) space, and unranking them can be done in O(n4k log k) time using
O(n) space.

Keywords— Ranking, unranking, bordered words, unbordered words, bifix-free words

1 Introduction

A word u is said to be a border of a word w if u is a non-empty proper prefix and suffix of w. If w has
a border, then it is said to be bordered ; otherwise, it is said to be unbordered. For example, the word
alfalfa has a and alfa as borders, so it is bordered. The word unbordered has no borders, so it
is unbordered. Bordered and unbordered words are important combinatorial objects in computer
science. Borders are fundamental to the most efficient string searching algorithms [1, 2]. Borders
are also useful for figuring out statistics on words [3, 4]. Additionally, unbordered words appear as
optimal sync words in frame synchronization [5, 6].

In computer science, three problems often arise when a particular combinatorial object is dis-
covered. We want to know how to efficiently count, exhaustively generate, and randomly generate
distinct instances of the object. Nielsen [7] gave a recurrence to count the number uk(n) of length-n
unbordered words over a k-letter alphabet. Since every word is either bordered or unbordered, the
number of length-n bordered words over a k-letter alphabet is kn − uk(n). Using his recurrence
he showed that there are Θ(kn) length-n bordered and unbordered words. Nielsen also showed
how to exhaustively generate all bordered and unbordered words using a recursive procedure. This
procedure requires O(n) time per length-n word generated. The problem of efficiently randomly
generating bordered and unbordered words is open.

1

mailto:d.gabric@uwinnipeg.ca

One way of randomly generating an instance of a combinatorial object is with the use of ranking
and unranking algorithms. Let o1, o2, . . . , om be an ordered list of distinct combinatorial objects.
The rank of oi is i, the position of oi within the list. A ranking algorithm for the list computes i
given oi. An unranking algorithm for the list computes oi given i. From here it is easy to see that
one can randomly generate one of the objects in the list by randomly generating a rank between 1
and m and then unranking the object at that rank. A näıve way to rank and unrank is to generate
the list of objects and then determine the position of a particular object. However, this is not
ideal, especially if the number of distinct objects is exponential. Thus, we want efficient ranking
and unranking algorithms. By efficient we mean that the ranking and unranking algorithms run in
o(f(n)) time using o(f(n)) space where f(n) is the number of distinct objects of “order” n.

Efficient ranking and unranking algorithms have been discovered for many different combinato-
rial objects, such as permutations [8, 9], trees [10, 11, 12, 13], and necklace variations [14, 15, 16, 17].
See [18] for a more general survey on the topic of ranking and unranking algorithms. In this paper,
we consider bordered and unbordered words. We present the first efficient ranking and unranking
algorithms for bordered and unbordered words in lexicographic order.

The rest of the paper is structured as follows. In Section 2 we introduce some definitions and
results that are necessary to prove our main results. In Section 3 we present a recurrence that will
serve as the basis for our ranking algorithms. In Section 4 we present our ranking algorithms for
bordered and unbordered words. In Section 5 we show how to unrank bordered and unbordered
words. In Section 6 we give some concluding remarks and an open problem. For all the algorithms
presented in this paper, the unit-cost RAM model is assumed. Under this computational model,
integer variables use constant space and integer arithmetic takes constant time. A complete C
implementation of our ranking and unranking algorithms can be found here: https://github.

com/DanielGabric/RankUnrank.

2 Preliminaries

Let Σk denote the alphabet {1, 2, . . . , k} where 1 < 2 < · · · < k. Let Σn
k denote the set of all

length-n words over Σk. Let x = x1x2 · · ·xm ∈ Σm
k and y = y1y2 · · · yn ∈ Σn

k . Then x < y in
lexicographic order either if x is a prefix of u or if xi < yi for the smallest i such that xi ̸= yi.

Let w = w1w2 · · ·wn be a length-n word. The unbordered prefix indicator a[1..n] of w is a
length-n integer array such that a[i] = 1 if w1w2 · · ·wi is unbordered and a[i] = 0 otherwise. The
border indicator b[1..n] of w is a length-n integer array such that b[i] = 1 if w has a border of
length i and b[i] = 0 otherwise. For example, consider the binary word w = 011101110. The
unbordered prefix indicator of w is a[1..9] = [1, 1, 1, 1, 0, 0, 0, 0, 0]. The border indicator of w is
b[1..9] = [1, 0, 0, 0, 1, 0, 0, 0, 0].

Lemma 1. Let n ≥ 1 be an integer. Let w = w1w2 · · ·wn be a word of length n. Then the
unbordered prefix indicator of w can be computed in O(n) time.

Proof. Recall the failure function of a word, also known as the longest prefix suffix array, from
the Knuth-Morris-Pratt string searching algorithm [1]. The failure function of w is a length-n
integer array A[1..n] such that A[i] = j if and only if the longest proper prefix of w1w2 · · ·wi that
matches a suffix of w1w2 · · ·wi is of length j. Thus A[i] = 0 if and only if w1w2 · · ·wi is unbordered.
Since the failure function encodes the longest borders of all prefixes of a word, we call it the Prefix
Border Array (PBA). Let PBA[1..n] be the PBA array of the word w. One can easily obtain the

2

https://github.com/DanielGabric/RankUnrank
https://github.com/DanielGabric/RankUnrank

unbordered prefix indicator of w from PBA[1..n] since PBA[i] = 0 implies w1w2 · · ·wi is unbordered.
Knuth, Morris, and Pratt [1] showed that PBA[1..n] can be computed in O(n) time. Therefore,
the unbordered prefix indicator of w can also be computed in O(n) time.

Lemma 2. Let n ≥ 1 be an integer. Let w be a word of length n. Then the border indicator of w
can be computed in O(n) time.

Proof. A length-n word w = w1w2 · · ·wn is said to have a period p if wi = wi+p for all 1 ≤ i ≤ n−p.
The auto-correlation [3, 4] of w is a binary word a1a2 · · · an such that ai = 1 if and only if i is a
period w. It is easy to see that a length-n word has a period p if and only if it has a border of
length n − p. Thus one can easily obtain the border indicator of w from the auto-correlation of
w. Corollary 2 in [19] shows how to compute the auto-correlation of a length-n word in O(n) time
using the failure function from the Knuth-Morris-Pratt string searching algorithm. Therefore, we
can also compute the border indicator of w in O(n) time.

The following two lemmas will serve as the basis for the recurrence in Section 3.

Lemma 3. Let w be a length-n bordered word. Let u be a border of w. Then u is the shortest
border of w if and only if u is unbordered.

Proof. We prove the contrapositive of both directions. If u is bordered, then the border of u is a
shorter border of w. If u is not the shortest border, then there exists a shorter border u′ of w. But
this border is now both a non-empty proper prefix and suffix of u, so u is bordered.

Lemma 4. Let w be a length-n bordered word. Let u be the shortest border of w. Then |u| ≤ n/2.

Proof. Suppose to the contrary, that |u| > n/2. Then u must overlap itself within w. So u is
bordered. But this border of u must also be a border of w. This contradicts the assumption that
u is the shortest border of w. Thus |u| ≤ n/2.

3 Recurrence

In this section we give a recurrence for the number of bordered words with a given prefix. This is
the basis for our ranking algorithm. Let n ≥ 1 be an integer. Let u be a word of length less than
or equal to n. Let Bk(u, n) denote the number of length-n bordered words over Σk that have u as
a prefix.

Theorem 5. Let n ≥ p ≥ 1 and k ≥ 2 be integers. Let u be a length-p word over Σk. Let b[1..p] be
the border indicator of u. Let a[1..p] be the unbordered prefix indicator of u. Then

Bk(u, n) =


n−p∑
i=1

a[i]kn−p−i +
⌊n/2⌋∑

i=n−p+1
a[i]b[i− (n− p)], if n ≤ 2p;

p∑
i=1

a[i]kn−p−i +
⌊n/2⌋∑
i=p+1

(ki−p −Bk(u, i))kn−2i, otherwise.

3

Proof. Let w be a length-n bordered word. Suppose that u is a prefix of w. Let v be the shortest
border of w. Our strategy is to split up the set of all length-n bordered words with u as a prefix into
sets, S1, . . . , Sn, such that

∑n
i=1 |Si| = Bk(u, n). We choose Si to be the set of all length-n bordered

words that have u as a prefix and have a length-i shortest border. These sets are clearly disjoint,
and their union is just the set of all length-n bordered words with u as a prefix. By Lemma 3 and
Lemma 4 we have that v is unbordered and |v| ≤ n/2. Therefore, we have |Si| = 0 for i > n/2.
Since v is unbordered, we have a[|v|] = 1 when |v| ≤ |u| = p. There are two cases to consider. The
first case is when |u| = p is greater than or equal to half the length of w, or 2p ≥ n. The other case
is when 2p < n.

Suppose 2p ≥ n. Since v is unbordered and |v| ≤ n/2 ≤ p, we have that v must occur as an
unbordered prefix of u. We further split this case into two subcases, one where |v| ≤ n − p and
one where n − p + 1 ≤ |v| ≤ n/2. If |v| ≤ n − p, then w = vxyv where u = vx and y is a word of
length n− p− |v|. Since v and x are determined by u, we have that there are kn−p−|v| choices for
w. If n− p+ 1 ≤ |v| ≤ n/2, then the instance of v that is a suffix of w must also have a non-empty
overlap with u. So w = vxyz where x is a possibly empty word and y, z are non-empty words such
that u = vxy and v = yz. But this means that u = yzxy. Thus u must have a border of length
|y| = |v| − |z| = |v| − (n− p). So w is bordered if and only if b[|v| − (n− p)] = 1. When summing
over all possible prefixes v for the case when 2p ≥ n, we use the unbordered indicator a[1..p] to
only include those v that are unbordered. So we get that

Bk(u, n) =

n−p∑
i=1

a[i]kn−p−i +

⌊n/2⌋∑
i=n−p+1

a[i]b[i− (n− p)].

Suppose 2p < n. Again, we further split this case into two subcases, one where |v| ≤ p, and
one where p + 1 ≤ |v| ≤ n/2. If |v| ≤ p, then v must occur as an unbordered prefix of u. As in the
previous case, this leads to there being kn−p−|v| choices for w. So suppose p + 1 ≤ |v| ≤ n/2. In
this case, we have that u must occur as a prefix of v. So this means that v is unbordered and has
u as a prefix. The number of such words v is clearly k|v|−p−Bk(u, |v|) (i.e., all length-|v| bordered
words with u as a prefix subtracted from all length-|v| words with u as a prefix). We can write
w = vxv where x is a word of length n− 2|v|. There are k|v|−p−Bk(u, |v|) choices for v and kn−2|v|

choices for x. Therefore, there are (k|v|−p − Bk(u, |v|))kn−2|v| choices for w in this case. Summing
over all prefixes v for the case 2p < n, and using the unbordered indicator a[1..p] to only include
those v that are unbordered and are of length less than or equal to |u| = p, we get

Bk(u, n) =

p∑
i=1

a[i]kn−p−i +

⌊n/2⌋∑
i=p+1

(ki−p −Bk(u, i))kn−2i.

Theorem 6. Let n ≥ 1. Let u be a word of length less than or equal to n. The recurrence Bk(u, n)
can be computed in O(n2) time using O(n) space.

Proof. Before starting the computation of Bk(u, n), we first need to compute the border indicator
of u and the unbordered prefix indicator of u. From Lemma 1 and Lemma 2 we see that both the
border indicator and unbordered prefix indicator of u can be computed in O(n) ∈ O(n2) time. For
each i ≥ |u|, we have that calculating Bk(u, i) involves computing a sum of O(i) terms. Thus, using
standard dynamic programming techniques, we can compute Bk(u, n) in O(n2) time using O(n)
space.

4

4 Ranking

In this section we show how to efficiently calculate the ranks of bordered and unbordered words.
Let rankBk(w) (resp. rankUk(w)) denote the rank of the word w in the lexicographic listing of
bordered (resp. unbordered) words of length |w| over the alphabet Σk.

Theorem 7. Let n ≥ 1 and k ≥ 2 be integers. Let w = w1w2 · · ·wn be a length-n bordered word
over Σk. Then

rankBk(w) = 1 +
n∑

i=1

wi−1∑
c=1

Bk(w1w2 · · ·wi−1c, n).

Proof. The rank of w is just the position of w in the lexicographic listing of all length-n bordered
words. This is equal to 1 plus the number of length-n bordered words that are smaller than w in
lexicographic order. By definition, for any word u = u1u2 · · ·un that is smaller than w, there exists
an i such that u1u2 · · ·ui−1 = w1w2 · · ·wi−1 and ui < wi. Thus, any length-n bordered word that
begins with w1w2 · · ·wi−1c for some c < wi is smaller than w. Summing over all possible i and
c < wi we have that the number of length-n bordered words that are smaller than w is

n∑
i=1

wi−1∑
c=1

Bk(w1w2 · · ·wi−1c, n).

Theorem 8. Let n ≥ 1 and k ≥ 2 be integers. Let w = w1w2 · · ·wn be a length-n unbordered word
over Σk. Then

rankUk(w) = 2 +

n∑
i=1

(wi − 1)kn−i − rankBk(w).

Proof. This proof follows the same structure as the proof of Theorem 7. The rank of w is equal to
1 plus the number of length-n unbordered words that are smaller than w. By definition, a length-n
word u = u1u2 · · ·un is smaller than w if a there exists an i such that u1u2 · · ·ui−1 = w1w2 · · ·wi−1

and ui < wi. Therefore, any length-n unbordered word that begins with w1w2 · · ·wi−1c for c < wi

is smaller than w. The number of length-n unbordered words that begin with w1w2 · · ·wi−1c is
equal to the number length-n bordered words that begin with w1w2 · · ·wi−1c subtracted from all
length-n words that begin with w1w2 · · ·wi−1c. This is just equal to kn−i −Bk(w1w2 · · ·wi−1c, n).
Summing over all possible i and c < wi, we have that the number of length-n unbordered words
that are smaller than w is

n∑
i=1

wi−1∑
c=1

(kn−i −Bk(w1w2 · · ·wi−1c, n)) =
n∑

i=1

wi−1∑
c=1

kn−i −
n∑

i=1

wi−1∑
c=1

Bk(w1w2 · · ·wi−1c, n)

= 1 +
n∑

i=1

(wi − 1)kn−i − rankBk(w).

5

Algorithm 1 Computing rankBk(w) and rankUk(w) given w and k.

1: function rankB(w = w1w2 · · ·wn, k)
2: total← 0
3: for i← 1 to n do
4: for c← 1 to wi − 1 do
5: total← total + Bk(w1w2 · · ·wi−1c, n)

6: return 1 + total

7: function rankU(w = w1w2 · · ·wn, k)
8: total← 0
9: for i← 1 to n do

10: total← total + (wi − 1)kn−i

11: return 2 + total − rankB(w)

Suppose w is of length n. While computing rankBk(w) in Algorithm 1, we have that for every
index i of w, we loop through wi − 1 ∈ O(k) different symbols. For each of these symbols we
compute Bk(u, n) for some word u of length i, which takes at most O(n2) time using O(n) space by
Theorem 6. Thus, we can compute rankBk(w) in O(kn3). Since we are only required to store the
length-n word w, an integer variable which stores the rank, and a single length-n integer array that
we reuse to calculate Bk(u, n), we have that computing rankBk(w) uses only O(n) space. Since
rankUk(w) uses rankBk(w) and does only O(n) extra work, it also runs in O(kn3) time using O(n)
space.

Theorem 9. Let n ≥ 1 and k ≥ 2 be integers. Let w be a length-n word over Σk. Then rankBk(w)
can be computed in O(kn3) time using O(n) space.

Theorem 10. Let n ≥ 1 and k ≥ 2 be integers. Let w be a length-n word over Σk. Then rankUk(w)
can be computed in O(kn3) time using O(n) space.

5 Unranking

In this section we show how to unrank bordered and unbordered words. We describe the algorithm
to compute the length-n bordered word with rank r. The same algorithm can be adapted to unrank
unbordered words as well.

Suppose w = w1w2 · · ·wn is a length-n bordered word with rank r that we are trying to
determine. First, we initialize w to be 1n, the lexicographically smallest length-n word. Then,
starting with i = 1, we determine wi by applying binary search on 1, 2, . . . , k to find the largest x
such that the rank of w1w2 · · ·wi−1x1n−j is less than or equal to r. Then we set wi = x, and move
on to wi+1.

The reason we are choosing the largest x is due to the fact that rankBk can be applied to both
bordered and unbordered words. It is easy to show that the largest word with a given rank is the
desired bordered word at that rank. Observe that when unranking unbordered words, choosing the
largest word at a particular rank can output a bordered word if the rank is larger than the number
of unbordered words. In this case, the output is kk · · · k.

6

Algorithm 2 Unranking bordered words given a rank r, a length n, alphabet size k.

1: function unrankB(r, n, k)
2: w1w2 · · ·wn ← 11 · · · 1
3: for i← 1 to n do
4: left← 1
5: right← k
6: while left < right do
7: save← wi

8: mid← ⌈(left + right)/2⌉
9: wi ← mid

10: if rankB(w1w2 · · ·wn, k) ≤ r then left← mid
11: else
12: wi ← save
13: right← mid

14: return w1w2 · · ·wn

For every index i of w we perform a binary search on the alphabet of size k. For each iteration
in the binary search we calculate rankBk(w). There are n indices of w, binary search on the
alphabet of size k takes O(log k) time, and calculating rankBk(w) takes O(kn3) time. Thus, running
UnRankB(r, n, k) takes O(n4k log k) time. Running UnRankB(r, n, k) also takes O(n) space since
it only requires us to use a length-n word, and a constant number of integer variables. Additionally,
when calculating rankBk(w) within the unranking procedure we can reuse a length-n integer array
to store Bk(u, n). To adapt the algorithm to unrank unbordered words, just replace rankB(w, k)
with rankU(w, k).

Theorem 11. Let n ≥ 1 and k ≥ 2 be integers. A bordered word w ∈ Σn
k with rank r can be

computed in O(n4k log k) time using O(n) space.

Theorem 12. Let n ≥ 1 and k ≥ 2 be integers. An unbordered word w ∈ Σn
k with rank r can be

computed in O(n4k log k) time using O(n) space.

6 Conclusions and Open Problems

In this paper we presented the first efficient ranking and unranking algorithms for bordered and
unbordered words. We gave a O(kn3) ranking algorithm that uses only O(n) space for bordered
and unbordered words. We also showed how to use this ranking algorithm to unrank bordered and
unbordered words in O(n4k log k) time using O(n) space. We conclude by posing an open problem.

• Can ranking and unranking bordered and unbordered words be done more efficiently? Can
they be done in quadratic time?

– It seems believable that the ranking and unranking algorithms in this paper can be
improved by a factor of n. We briefly lay out the reasoning. As is, the recurrence
Bk(u, n) takes O(n2) time to determine. However, if we compute Bk(u, n)−kBk(u, n−
1), all but a constant number of terms cancel out in the case that n > 2|u|. In the case

7

that n ≤ 2|u|, we are still left with O(n) terms in the summation. If this summation
could be computed in constant time, then computing Bk(u, n) would take O(n) time,
effectively reducing the time complexity of ranking and unranking by a factor of n.

References

[1] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt. Fast pattern matching in strings. SIAM J.
Comput., 6(2):323–350, 1977.

[2] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,
20(10):762–772, 1977.

[3] L. J. Guibas and A. M. Odlyzko. Periods in strings. J. Combin. Theory Ser. A, 30(1):19–42,
1981.

[4] L. J. Guibas and A. M. Odlyzko. String overlaps, pattern matching, and nontransitive games.
J. Combin. Theory Ser. A, 30(2):183–208, 1981.

[5] J. Massey. Optimum frame synchronization. IEEE Trans. Commun., 20(2):115–119, 1972.

[6] R. Scholtz. Frame synchronization techniques. IEEE Trans. Commun., 28(8):1204–1213, 1980.

[7] P. T. Nielsen. A note on bifix-free sequences. IEEE Trans. Inform. Theory, IT-19:704–706,
1973.

[8] W. Myrvold and F. Ruskey. Ranking and unranking permutations in linear time. Inform.
Process. Lett., 79(6):281–284, 2001.

[9] M. Mareš and M. Straka. Linear-time ranking of permutations. In L. Arge, M. Hoffmann, and
E. Welzl, editors, Algorithms – ESA 2007, volume 4698 of Lecture Notes in Computer Science,
pages 187–193, Berlin, Heidelberg, 2007. Springer.

[10] J. M. Pallo. Enumerating, ranking and unranking binary trees. Computer J., 29(2):171–175,
01 1986.

[11] L. Li. Ranking and unranking of AVL-trees. SIAM J. Comput., 15(4):1025–1035, 1986.

[12] U. Gupta, D. T. Lee, and C. K. Wong. Ranking and unranking of B-trees. J. Algorithms,
4(1):51–60, 1983.

[13] U. Gupta, D. T. Lee, and C. K. Wong. Ranking and unranking of 2-3 trees. SIAM J. Comput.,
11(3):582–590, 1982.

[14] P. Hartman and J. Sawada. Ranking and unranking fixed-density necklaces and Lyndon words.
Theoret. Comput. Sci., 791:36–47, 2019.

[15] J. Sawada and A. Williams. Practical algorithms to rank necklaces, Lyndon words, and de
Bruijn sequences. J. Disc. Alg., 43:95–110, 2017.

8

[16] D. Adamson, V. V. Gusev, I. Potapov, and A. Deligkas. Ranking Bracelets in Polynomial
Time. In Pawe l Gawrychowski and Tatiana Starikovskaya, editors, 32nd Annual Symposium on
Combinatorial Pattern Matching (CPM 2021), volume 191 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 4:1–4:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[17] D. Adamson. Ranking binary unlabelled necklaces in polynomial time. In Yo-Sub Han and
György Vaszil, editors, Descriptional Complexity of Formal Systems, volume 13439 of Lecture
Notes in Computer Science, pages 15–29, Cham, 2022. Springer International Publishing.

[18] F. Ruskey. Combinatorial Generation. Working version (1j), 2003. https://page.math.

tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf.

[19] D. A. Lind. Perturbations of shifts of finite type. SIAM J. Disc. Math., 2(3):350–365, 1989.

9

https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf

	Introduction
	Preliminaries
	Recurrence
	Ranking
	Unranking
	Conclusions and Open Problems

