Smallest and Largest Block Palindrome Factorizations

Daniel Gabric^{*} and Jeffrey Shallit[†]

Abstract

A palindrome is a word that reads the same forwards and backwards. A block palindrome factorization (or BP-factorization) is a factorization of a word into blocks that becomes palindrome if each identical block is replaced by a distinct symbol. We call the number of blocks in a BP-factorization the width of the BP-factorization. The largest BP-factorization of a word w is the BP-factorization of w with the maximum width. We study words with certain BP-factorizations. First, we give a recurrence for the number of length-n words with largest BP-factorization of a word tends to a constant. Third, we give some results on another extremal variation of BP-factorization, the smallest BP-factorization. A border of a word w is a non-empty word that is both a proper prefix and suffix of w. Finally, we conclude by showing a connection between words with a unique border and words whose smallest and largest BP-factorizations

1 Introduction

Let Σ_k denote the alphabet $\{0, 1, \ldots, k-1\}$. The length of a word w is denoted by |w|. A *border* of a word w is a non-empty word that is both a proper prefix and suffix of w. A word is said to be *bordered* if it has a border. Otherwise, the word is said to be *unbordered*. For example, the French word **entente** is bordered, and has two borders, namely **ente** and **e**.

It is well-known [1] that the number u_n of length-*n* unbordered words over Σ_k satisfies

$$u_{n} = \begin{cases} 1, & \text{if } n = 0; \\ ku_{n-1} - u_{n/2}, & \text{if } n > 0 \text{ is even}; \\ ku_{n-1}, & \text{if } n \text{ is odd.} \end{cases}$$
(1)

A palindrome is a word that reads the same forwards as it does backwards. More formally, letting $w^R = w_n w_{n-1} \cdots w_1$ where $w = w_1 w_2 \cdots w_n$ and all w_i are symbols, a palindrome is

^{*}Department of Math/Stats, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada; d.gabric@uwinnipeg.ca.

[†]School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada; shallit@uwaterloo.ca.

a word w such that $w = w^R$. The definition of a palindrome is quite restrictive. The second half of a palindrome is fully determined by the first half. Thus, compared to all length-nwords, the number of length-n palindromes is vanishingly small. But many words exhibit palindrome-like structure. For example, take the English word marjoram. It is clearly not a palindrome, but it comes close. Replacing the block jo with a single letter turns the word into a palindrome. In this paper, we consider a generalization of palindromes that incorporates this kind of palindromic structure.

In the 2015 British Olympiad [2], the concept of a block palindrome factorization was first introduced. Let w be a non-empty word. A block palindrome factorization (or BPfactorization) of w is a factorization $w = w_m \cdots w_1 w_0 w_1 \cdots w_m$ of a word such that w_0 is a possibly empty word, and every other factor w_i is non-empty for all i with $1 \le i \le m$. We say that a BP-factorization $w_m \cdots w_1 w_0 w_1 \cdots w_m$ is of width t where t = 2m + 1 if w_0 is nonempty and t = 2m otherwise. In other words, the width of a BP-factorization is the number of non-empty blocks in the factorization. The largest BP-factorization¹ [3] of a word w is a BP-factorization $w = w_m \cdots w_1 w_0 w_1 \cdots w_m$ where m is maximized (i.e., where the width of the BP-factorization is maximized). See [4, 5] for more on the topic of BP-factorizations, the gapped palindrome. If w_0 is non-empty and $|w_i| = 1$ for all i with $1 \le i \le m$, then w is said to be a gapped palindrome. Régnier [7] studied something similar to BP-factorizations, but in her paper she was concerned with borders of borders. See [8, 9] for results on factoring words into palindromes.

Example 1. We use the centre dot \cdot to denote the separation between blocks in the BP-factorization of a word.

Consider the word abracadabra. It has the following BP-factorizations:

abracadabra, $abra \cdot cad \cdot abra,$ $a \cdot bracadabr \cdot a,$ $a \cdot br \cdot acada \cdot br \cdot a,$ $a \cdot br \cdot a \cdot cad \cdot a \cdot br \cdot a.$

The last BP-factorization is of width 7 and has the longest width; thus it is the largest BP-factorization of abracadabra.

Let w be a length-n word. Suppose $w_m \cdots w_1 w_0 w_1 \cdots w_m$ is the largest BP-factorization of w. Goto et al. [3] showed that w_i is the shortest border of $w_i \cdots w_1 w_0 w_1 \cdots w_i$ where $i \ge 1$. This means that we can compute the largest BP-factorization of w by greedily "peeling off" the shortest borders of central factors until you hit an unbordered word or the empty word.

The rest of the paper is structured as follows. In Section 2 we give a recurrence for the number of length-n words with largest BP-factorization of width t. In Section 3 we

¹Largest BP-factorizations also appear in https://www.reddit.com/r/math/comments/ga2iyo/i_just_defined_the_palindromity_function_on/.

show that the expected width of the largest BP-factorization of a length-n word tends to a constant. In Section 4 we consider *smallest BP-factorizations* in the sense that one "peels off" the longest non-overlapping border. We say a border u of a word w is *non-overlapping* if $|u| \leq |w|/2$; otherwise u is *overlapping*. Finally, in Section 5 we present some results on words with a unique border and show that they are connected to words whose smallest and largest BP-factorizations are the same.

2 Counting largest BP-factorizations

In this section, we prove a recurrence for the number $\text{LBP}_k(n,t)$ of length-*n* words over Σ_k with largest BP-factorization of width *t*. See Table 1 for sample values of $\text{LBP}_2(n,t)$ for small *n*, *t*. For the following theorem, recall the definition of u_n from Equation 1.

Theorem 2. Let $n, t \ge 0$, and $k \ge 2$ be integers. Then

$$\mathrm{LBP}_{k}(n,t) = \begin{cases} \sum_{i=1}^{(n-t)/2+1} u_{i} \, \mathrm{LBP}_{k}(n-2i,t-2), & \text{if } n, t \text{ even}; \\ \sum_{i=1}^{(n-t+1)/2} u_{2i} \, \mathrm{LBP}_{k}(n-2i,t-1), & \text{if } n \text{ even, } t \text{ odd}; \\ 0, & \text{if } n \text{ odd, } t \text{ even}; \\ \sum_{i=1}^{(n-t)/2+1} u_{2i-1} \, \mathrm{LBP}_{k}(n-2i+1,t-1), & \text{if } n, t \text{ odd}. \end{cases}$$

where

$$LBP_k(0,0) = 1,$$

$$LBP_k(2n,2) = u_n,$$

$$LBP_k(n,1) = u_n.$$

Proof. Let w be a length-n word whose largest BP-factorization $w_m \cdots w_1 w_0 w_1 \cdots w_m$ is of width t. Clearly LBP_k(0,0) = 1. We know that each block in a largest BP-factorization is unbordered, since each block is a shortest border of some central factor. This immediately implies LBP_k $(n,1) = u_n$ and LBP_k $(2n,2) = u_n$.

Now we take care of the other cases.

• Suppose n, t are even. Then by removing both instances of w_1 from w, we get $w' = w_m \cdots w_2 w_2 \cdots w_m$, which is a length- $(n - 2|w_1|)$ word whose largest BP-factorization is of width t - 2. This mapping is clearly reversible, since all blocks in a largest BP-factorization are unbordered, including w_1 . Thus summing over all possible w_1 and all length- $(n - 2|w_1|)$ words with largest BP-factorization of width t - 2 we have

LBP_k(n,t) =
$$\sum_{i=1}^{(n-t)/2+1} u_i LBP_k(n-2i,t-2).$$

• Suppose n is even and t is odd. Then by removing w_0 from w, we get $w' = w_m \cdots w_1 w_1 \cdots w_m$, which is a length- $(n - |w_0|)$ word whose largest BP-factorization is of width t - 1. This mapping is reversible for the same reason as in the previous case. The word w' is of even length since $|w'| = 2|w_1 \cdots w_m|$. Since n is even and |w'| is even, we must have that $|w_0|$ is even as well. Thus summing over all possible w_0 and all length- $(n - |w_0|)$ words with largest BP-factorization of width t - 1, we have

LBP_k(n,t) =
$$\sum_{i=1}^{(n-t+1)/2} u_{2i}$$
LBP_k(n - 2i, t - 1).

- Suppose n is odd and t is even. Then the length of w is $2|w_1 \cdots w_m|$, which is even, a contradiction. Thus $LBP_k(n,t) = 0$.
- Suppose n, t are odd. Then by removing w_0 from w, we get $w' = w_m \cdots w_1 w_1 \cdots w_m$, which is a length- $(n - |w_0|)$ word whose largest BP-factorization is of width t - 1. This mapping is reversible for the same reasons as in the previous cases. Since n is odd and |w'| is even (proved in the previous case), we must have that $|w_0|$ is odd. Thus summing over all possible w_0 and all length- $(n - |w_0|)$ words with largest BP-factorization of width t - 1, we have

$$\sum_{i=1}^{(n-t)/2+1} u_{2i-1} \operatorname{LBP}_k(n-2i+1,t-1).$$

n t	1	2	3	4	5	6	7	8	9	10
10	284	12	224	40	168	72	96	64	32	32
11	568	0	472	0	416	0	336	0	192	0
12	1116	20	856	88	656	176	448	224	224	160
13	2232	0	1752	0	1488	0	1248	0	896	0
14	4424	40	3328	176	2544	432	1856	640	1152	640
15	8848	0	6736	0	5440	0	4576	0	3584	0
16	17622	74	13100	372	9896	984	7408	1744	5088	2080
17	35244	0	26348	0	20536	0	16784	0	13664	0
18	70340	148	51936	760	38824	2248	29152	4416	21088	6240
19	140680	0	104168	0	79168	0	62800	0	51008	0
20	281076	284	206744	1592	153344	4992	114688	10912	84704	17312

Table 1: Some values of LBP₂(n, t) for n, t where $10 \le n \le 20$ and $1 \le t \le 10$.

3 Expected width of largest BP-factorization

In this section, we show that the expected width $E_{n,k}$ of the largest BP-factorization of a length-*n* word over Σ_k is bounded by a constant. From the definition of expected value, it follows that

$$E_{n,k} = \frac{1}{k^n} \sum_{i=1}^n i \cdot \text{LBP}_k(n,i).$$

Table 2 shows the behaviour of $\lim_{n\to\infty} E_{n,k}$ as k increases.

Lemma 3. Let $k \ge 2$ and $n \ge t \ge 1$ be integers. Then

$$\frac{\mathrm{LBP}_k(n,t)}{k^n} \le \frac{1}{k^{t/2-1}}.$$

Proof. Let w be a length-n word whose largest BP-factorization $w_m \cdots w_1 w_0 w_1 \cdots w_m$ is of width t. Since w_i is non-empty for every $1 \le i \le m$, we have that $\text{LBP}_k(n, t) \le k^{n-m} \le k^{n-t/2+1}$. So

$$\frac{\mathrm{LBP}_k(n,t)}{k^n} \leq \frac{1}{k^{t/2-1}}$$

for all $n \ge t \ge 1$.

Theorem 4. The limit $E_k = \lim_{n \to \infty} E_{n,k}$ exists for all $k \ge 2$.

Proof. Follows from the definition of $E_{n,k}$, Lemma 3, and the direct comparison test for convergence.

Interpreting E_k as a power series in k^{-1} , we empirically observe that E_k is approximately equal to

$$1 + \frac{2}{k} + \frac{4}{k^2} + \frac{6}{k^3} + \frac{10}{k^4} + \frac{16}{k^5} + \frac{24}{k^6} + \frac{38}{k^7} + \frac{58}{k^8} + \frac{88}{k^9} + \cdots$$

We conjecture the following about E_k .

Conjecture 5. Let $k \ge 2$. Then

$$E_k = 1 + \sum_{i=1}^{\infty} a_i k^{-i}$$

where the sequence $(a_n/2)_{n\geq 1}$ is <u>A274199</u> in the On-Line Encyclopedia of Integer Sequences (OEIS) [10].

k	$\approx E_k$
2	6.4686
3	2.5908
4	1.9080
5	1.6314
6	1.4827
7	1.3902
8	1.3272
9	1.2817
10	1.2472
:	:
100	1.0204

Table 2: Asymptotic expected width of a word's largest BP-factorization.

Cording et al. [11] proved that the expected length of the longest unbordered factor in a word is $\Theta(n)$. Taking this into account, it is not surprising that the expected length of the largest BP-factorization of a word tends to a constant.

4 Smallest BP-factorization

A word w, seen as a block, clearly satisfies the definition of a BP-factorization. Thus, taken literally, the smallest BP-factorization for all words is of width 1. But this is not very interesting, so we consider a different definition instead. A border u of a word w is non-overlapping if $|u| \leq |w|/2$; otherwise u is overlapping. We say that the smallest BP-factorization of a word w is a BP-factorization $w = w_m \cdots w_1 w_0 w_1 \cdots w_m$ where each w_i is the longest non-overlapping border of $w_i \cdots w_1 w_0 w_1 \cdots w_i$, except w_0 , which is either empty or unbordered. For example, going back to Example 1, the smallest BP-factorization of abracadabra is $abra \cdot cad \cdot abra$ and the smallest BP-factorization of reappear is $\mathbf{r} \cdot \mathbf{ea} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{ea} \cdot \mathbf{r}$.

A natural question to ask is: what is the maximum possible width $f_k(n)$ of the smallest BP-factorization of a length-*n* word? Through empirical observation, we arrive at the following conjectures:

- We have $f_2(8n+i) = 6n+i$ for i with $0 \le i \le 5$ and $f_2(8n+6) = f_2(8n+7) = 6n+5$.
- We have $f_k(n) = n$ for $k \ge 3$.

To calculate $f_k(n)$, two things are needed: an upper bound on $f_k(n)$, and words that witness the upper bound.

Theorem 6. Let $l \ge 0$ be an integer. Then $f_2(8l+i) = 6l+i$ for i with $0 \le i \le 5$ and $f_2(8l+6) = f_2(8l+7) = 6l+5$.

Proof. Let $n \ge 0$ be an integer. We start by proving lower bounds on $f_2(n)$. Suppose n = 8l for some $l \ge 0$. Then the width of the smallest BP-factorization of

 $(0101)^l (1001)^l$

is 6l, so $f_2(8l) \ge 6l$. To see this, notice that the smallest BP-factorization of 01011001 is $01 \cdot 0 \cdot 1 \cdot 1 \cdot 0 \cdot 01$, and therefore is of width 6. Suppose n = 8l+i for some i with $1 \le i \le 7$. Then one can take $(0101)^l (1001)^l$ and insert either 0, 00, 010, 0110, 01010, 010110, or 0110110 to the middle of the word to get the desired length.

Now we prove upper bounds on $f_2(n)$. Let $t \leq n$ be a positive integer. Let w be a length n word whose largest BP-factorization $w_m \cdots w_1 w_0 w_1 \cdots w_m$ is of width t. One can readily verify that $f_2(0) = 0$, $f_2(1) = 1$, $f_2(2) = 2$, $f_2(3) = 3$, $f_2(4) = 4$, and $f_2(5) = f_2(6) = f_2(7) = 5$ through exhaustive search of all binary words of length < 8. Suppose $m \geq 4$, so $n \geq t \geq 8$. Then we can write $w = w_m w_{m-1} w_{m-2} \cdots w_{m-2} w_{m-1} w_m$ where $|w_{m-2}|, |w_{m-1}|, |w_m| > 0$. It is easy to show that $|w_{m-2} w_{m-1} w_m| \geq 4$ by checking that all binary words of length < 8 do not admit a smallest BP-factorization of width 6. In the worst case, we can peel off prefixes and suffixes of length 4 while accounting for the 6 blocks they add to the BP-factorization until we hit the middle core of length < 8. Thus, we have $f_2(8l + i) \leq 6l + j$ where j is the width of the smallest BP-factorization of the middle core, which is of length i. We have already computed $f_2(i)$ for $0 \leq i \leq 7$, so the upper bounds follow.

Theorem 7. Let $n \ge 0$ and $k \ge 3$ be integers. Then $f_k(n) = n$.

Proof. Clearly $f_k(n) \leq n$. We prove $f_k(n) \geq n$. If n is divisible by 6, then consider the word $(012)^{n/6}(210)^{n/6}$. If n is not divisible by 6, then take $(012)^{\lfloor n/6 \rfloor}(210)^{\lfloor n/6 \rfloor}$ and insert either 0, 00, 010, 0110, or 01010 in the middle of the word. When calculating the smallest BP-factorization of the resulting words, it is easy to see that at each step we are removing a border of length 1. Thus, their largest BP-factorization is of width n.

5 Equal smallest and largest BP-factorizations

Recall back to Example 1, that abracadabra has distinct smallest and largest BP-factorizations, namely $abra \cdot cad \cdot abra$ and $a \cdot br \cdot a \cdot cad \cdot a \cdot br \cdot a$. However, the word alfalfa has the same smallest and largest BP-factorizations, namely $a \cdot lf \cdot a \cdot lf \cdot a$. Under what conditions are the smallest and largest BP-factorizations of a word the same? Looking at unique borders seems like a good place to start, since the shortest border and longest non-overlapping border coincide when a word has a unique border. However, the converse is not true—just consider the previous example alfalfa. The shortest border and longest non-overlapping border are both a, but a is not a unique border of alfalfa.

In Theorem 8 we characterize all words whose smallest and largest BP-factorization coincide.

Theorem 8. Let $m, m' \ge 1$ be integers. Let w be a word with smallest BP-factorization $w'_{m'} \cdots w'_1 w'_0 w'_1 \cdots w'_{m'}$ and largest BP-factorization $w_m \cdots w_1 w_0 w_1 \cdots w_m$. Then m = m'

and $w_i = w'_i$ for all $i, 0 \le i \le m$ if and only if for all $i \ne 2, 0 < i \le m$, we have that w_i is the unique border of $w_i \cdots w_1 w_0 w_1 \cdots w_i$ and for i = 2 we have that either

- 1. w_2 is the unique border of $w_2w_1w_0w_1w_2$, or
- 2. $w_2w_1w_0w_1w_2 = w_0w_1w_0w_1w_0$ where w_0 is the unique border of $w_0w_1w_0$.

Proof.

 \implies : Let i be an integer such that $0 < i \leq m$. Let $u_i = w_i \cdots w_1 w_0 w_1 \cdots w_i$. Since w_i is both the shortest border and longest non-overlapping border of u_i (i.e., $w_i = w'_i$), we have that u_i has exactly one border of length $\leq |u_i|/2$. Thus, either w_i is the unique border of u_i , or u_i has a border of length > $|u_i|/2$. If w_i is the unique border of u_i , then we are done. So suppose that u_i has a border of length $> |u_i|/2$. Let v_i be the shortest such border. We have that w_i is both a prefix and suffix of v_i . In fact, w_i must be the unique border of v_i . Otherwise we contradict the minimality of v_i , or the assumption that w_i is both the shortest border and longest non-overlapping border of u_i . Since w_i is unbordered, it cannot overlap itself in v_i and w_i . So we can write $v_i = w_i y w_i$ for some word y where $u_i = w_i y w_i y w_i$, or $u_i = w_i x w_i x' w_i x'' w_i$ such that $y = x w_i x' = x' w_i x''$. If $u_i = w_i x w_i x' w_i x'' w_i$, then we see that $w_i x'$ is a suffix of y and $x' w_i$ is a prefix of y, implying that $w_i x' w_i$ is a new smaller border of u_i . This either contradicts the assumption that v_i is the shortest border of length $> |u_i|/2$, or the assumption that u_i has exactly one border of length $\leq |u_i|/2$. Thus, we have that $u_i = w_i y w_i y w_i$. The shortest border and longest non-overlapping border of $y w_i y$ must be y, by assumption. Additionally, w_i is unbordered, so u_i is of width 5 and i = 2. This implies that $w_i = w_2 = w_0$ and $y = w_1$.

 \Leftarrow : Let *i* be an integer such that $0 < i \leq m$. We omit the case when i = 0, since proving $w_i = w'_i$ for all other *i* is sufficient. Since w_i is the unique border of $u_i = w_i \cdots w_1 w_0 w_1 \cdots w_i$, we have that the shortest border and longest non-overlapping border of u_i is w_i . In other words, we have that $w_i = w'_i$. Suppose i = 2 and $u_2 = w_2 w_1 w_0 w_1 w_2 = w_0 w_1 w_0 w_1 w_0$ where w_0 is the unique border of $w_0 w_1 w_0$. Since w_0 is the unique border of $w_0 w_1 w_0$, it is also the shortest border of u_2 . Additionally, the next longest border of u_2 is $w_0 w_1 w_0$, which is overlapping. So w_0 is also the longest non-overlapping border of u_2 . Thus $w_2 = w'_2$.

Just based on this characterization, finding a recurrence for the number of words with a coinciding smallest and largest BP-factorization seems hard. So we turn to a different, related problem: counting the number of words with a unique border.

5.1 Unique borders

Harju and Nowotka [12] counted the number $B_k(n)$ of length-*n* words over Σ_k with a unique border, and the number $B_k(n,t)$ of length-*n* words over Σ_k with a length-*t* unique border. However, through personal communication with the authors, a small error in one of the proofs leading up to their formula for $B_k(n,t)$ was discovered. Thus, the formula for $B_k(n,t)$ as stated in their paper is incorrect. In this section, we present the correct recurrence for the number of length-*n* words with a length-*t* unique border. We also show that the probability a length-*n* word has a unique border tends to a constant. See <u>A334600</u> in the OEIS [10] for the sequence $(B_2(n))_{n>0}$.

Suppose w is a word with a unique border u. Then u must be unbordered, and |u| must not exceed half the length of w. If either of these were not true, then w would have more than one border. By combining these ideas, we get Theorem 9 and Theorem 10.

Theorem 9. Let $n > t \ge 1$ be integers. Then the number of length-n words with a unique length-t border satisfies the recurrence

$$B_{k}(n,t) = \begin{cases} 0, & \text{if } n < 2t; \\ u_{t}k^{n-2t} - \sum_{i=2t}^{\lfloor n/2 \rfloor} B_{k}(i,t)k^{n-2i}, & \text{if } n \ge 2t \text{ and } n+t \text{ odd}; \\ u_{t}k^{n-2t} - B_{k}((n+t)/2,t) - \sum_{i=2t}^{\lfloor n/2 \rfloor} B_{k}(i,t)k^{n-2i}, & \text{if } n \ge 2t \text{ and } n+t \text{ even.} \end{cases}$$

Proof. Let w be a length-n word with a unique length-t border u. Since u is the unique border of w, it is unbordered. Thus, we can write w = uvu for some (possibly empty) word v. For n < 2t, we have that $B_k(n, t) = 0$ since u is unbordered and thus cannot overlap itself in w.

Suppose $n \ge 2t$. Let $\overline{B_k}(n, t)$ denote the number of length-*n* words that have a length-*t* unbordered border and have a border of length > *t*. Clearly $B_k(n, t) = u_t k^{n-2t} - \overline{B_k}(n, t)$. Suppose *w* has another border *u'* of length > *t*. Furthermore, suppose that there is no other border *u''* with |u| < |u''| < |u'|. Then *u* is the unique border of *u'*. Since *u* is the shortest border, we have $|u| \le n/2$. But we could possibly have |u'| > n/2. The only possible way for |u'| to exceed n/2 is if w = uv'uv'u for some (possibly empty) word *v*. But this is only possible if n + t is even; otherwise we cannot place *u* in the centre of *w*. When n + t is odd, we compute $\overline{B_k}(n, t)$ by summing over all possibilities for u' (i.e., $2t \le |u'| \le \lfloor n/2 \rfloor$) and the middle part of *w* (i.e., v'' where w = u'v''u'). This gives us the recurrence,

$$\overline{B_k}(n,t) = \sum_{i=2t}^{\lfloor n/2 \rfloor} B_k(i,t) k^{n-2i}.$$

When n+t is even, we compute $\overline{B_k}(n,t)$ in the same fashion, except we also include the case where |u'| = (n+t)/2. This gives us the recurrence,

$$\overline{B_k}(n,t) = B_k((n+t)/2,t) + \sum_{i=2t}^{\lfloor n/2 \rfloor} B_k(i,t)k^{n-2i}.$$

Theorem 10. Let $n \ge 2$ be an integer. Then the number of length-n words with a unique border is

$$B_k(n) = \sum_{t=1}^{\lfloor n/2 \rfloor} B_k(n,t).$$

5.2 Limiting values

We show that the probability that a random word of length n has a unique border tends to a constant. Table 3 shows the behaviour of this probability as k increases.

Let $P_{n,k}$ be the probability that a random word of length n has a unique border. Then

$$P_{n,k} = \frac{B_k(n)}{k^n} = \frac{1}{k^n} \sum_{i=1}^{\lfloor n/2 \rfloor} B_k(n,i)$$

Lemma 11. Let $k \ge 2$ and $n \ge 2t \ge 2$ be integers. Then

$$\frac{B_k(n,t)}{k^n} \le \frac{1}{k^t}.$$

Proof. Let w be a length-n word. Suppose w has a unique border of length t. Since $t \le n/2$, we can write w = uvu for some words u and v where |u| = t. But this means that $B_k(n, t) \le k^{n-t}$, and the lemma follows.

Theorem 12. Let $k \geq 2$ be an integer. Then the limit $P_k = \lim_{n \to \infty} P_{n,k}$ exists.

Proof. Follows from the definition of $P_{n,k}$, Lemma 11, and the direct comparison test for convergence.

k	$\approx P_k$
2	0.5155
3	0.3910
4	0.2922
5	0.2302
6	0.1890
7	0.1599
8	0.1384
9	0.1219
10	0.1089
:	:
100	0.0101

Table 3: Probability that a word has a unique border.

References

 P. T. Nielsen. A note on bifix-free sequences. *IEEE Trans. Inform. Theory*, IT-19:704– 706, 1973.

- [2] The 2015 British Informatics Olympiad (Round 1 Question 1). https://olympiad. org.uk/2015/index.html.
- [3] K. Goto, I. Tomohiro, H. Bannai, and S. Inenaga. Block palindromes: A new generalization of palindromes. In T. Gagie, A. Moffat, G. Navarro, and E. Cuadros-Vargas, editors, *String Processing and Information Retrieval*, volume 11147 of *Lecture Notes in Computer Science*, pages 183–190, Cham, 2018. Springer International Publishing.
- [4] K. Mahalingam, A. Maity, P. Pandoh, and R. Raghavan. Block reversal on finite words. *Theoret. Comput. Sci.*, 894:135–151, 2021.
- [5] K. Mahalingam, A. Maity, and P. Pandoh. Rich words in the block reversal of a word, 2023. arXiv:2302.02109.
- [6] R. Kolpakov and G. Kucherov. Searching for gapped palindromes. *Theoret. Comput. Sci.*, 410(51):5365–5373, 2009.
- [7] M. Régnier. Enumeration of bordered words, le langage de la vache-qui-rit. RAIRO-Theor. Inf. Appl., 26(4):303-317, 1992.
- [8] A. E. Frid, S. Puzynina, and L. Q. Zamboni. On palindromic factorization of words. Adv. in Appl. Math., 50(5):737–748, 2013.
- [9] O. Ravsky. On the palindromic decomposition of binary words. J. Autom. Lang. Comb., 8(1):75–83, 2003.
- [10] N. J. A. Sloane et al. OEIS Foundation Inc. (2022), The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
- [11] P. H. Cording, T. Gagie, M. B. T. Knudsen, and T. Kociumaka. Maximal unbordered factors of random strings. *Theoret. Comput. Sci.*, 852:78–83, 2021.
- [12] T. Harju and D. Nowotka. Counting bordered and primitive words with a fixed weight. *Theoret. Comput. Sci.*, 340(2):273–279, 2005.