Smallest and Largest Block Palindrome Factorizations

Daniel Gabric* and Jeffrey Shallit ${ }^{\dagger}$

Abstract

A palindrome is a word that reads the same forwards and backwards. A block palindrome factorization (or BP-factorization) is a factorization of a word into blocks that becomes palindrome if each identical block is replaced by a distinct symbol. We call the number of blocks in a BP-factorization the width of the BP-factorization. The largest $B P$-factorization of a word w is the BP-factorization of w with the maximum width. We study words with certain BP-factorizations. First, we give a recurrence for the number of length- n words with largest BP-factorization of width t. Second, we show that the expected width of the largest BP-factorization of a word tends to a constant. Third, we give some results on another extremal variation of BP-factorization, the smallest BP-factorization. A border of a word w is a non-empty word that is both a proper prefix and suffix of w. Finally, we conclude by showing a connection between words with a unique border and words whose smallest and largest BP-factorizations coincide.

1 Introduction

Let Σ_{k} denote the alphabet $\{0,1, \ldots, k-1\}$. The length of a word w is denoted by $|w|$. A border of a word w is a non-empty word that is both a proper prefix and suffix of w. A word is said to be bordered if it has a border. Otherwise, the word is said to be unbordered. For example, the French word entente is bordered, and has two borders, namely ente and e.

It is well-known [1] that the number u_{n} of length- n unbordered words over Σ_{k} satisfies

$$
u_{n}= \begin{cases}1, & \text { if } n=0 \tag{1}\\ k u_{n-1}-u_{n / 2}, & \text { if } n>0 \text { is even } \\ k u_{n-1}, & \text { if } n \text { is odd }\end{cases}
$$

A palindrome is a word that reads the same forwards as it does backwards. More formally, letting $w^{R}=w_{n} w_{n-1} \cdots w_{1}$ where $w=w_{1} w_{2} \cdots w_{n}$ and all w_{i} are symbols, a palindrome is

[^0]a word w such that $w=w^{R}$. The definition of a palindrome is quite restrictive. The second half of a palindrome is fully determined by the first half. Thus, compared to all length- n words, the number of length- n palindromes is vanishingly small. But many words exhibit palindrome-like structure. For example, take the English word marjoram. It is clearly not a palindrome, but it comes close. Replacing the block jo with a single letter turns the word into a palindrome. In this paper, we consider a generalization of palindromes that incorporates this kind of palindromic structure.

In the 2015 British Olympiad [2], the concept of a block palindrome factorization was first introduced. Let w be a non-empty word. A block palindrome factorization (or BPfactorization) of w is a factorization $w=w_{m} \cdots w_{1} w_{0} w_{1} \cdots w_{m}$ of a word such that w_{0} is a possibly empty word, and every other factor w_{i} is non-empty for all i with $1 \leq i \leq m$. We say that a BP-factorization $w_{m} \cdots w_{1} w_{0} w_{1} \cdots w_{m}$ is of width t where $t=2 m+1$ if w_{0} is nonempty and $t=2 m$ otherwise. In other words, the width of a BP-factorization is the number of non-empty blocks in the factorization. The largest BP-factorization ${ }^{1}$ [3] of a word w is a BP-factorization $w=w_{m} \cdots w_{1} w_{0} w_{1} \cdots w_{m}$ where m is maximized (i.e., where the width of the BP-factorization is maximized). See $[4,5]$ for more on the topic of BP-factorizations and block reversals. Kolpakov and Kucherov [6] studied a special case of BP-factorizations, the gapped palindrome. If w_{0} is non-empty and $\left|w_{i}\right|=1$ for all i with $1 \leq i \leq m$, then w is said to be a gapped palindrome. Régnier [7] studied something similar to BP-factorizations, but in her paper she was concerned with borders of borders. See [8, 9] for results on factoring words into palindromes.

Example 1. We use the centre dot • to denote the separation between blocks in the BPfactorization of a word.

Consider the word abracadabra. It has the following BP-factorizations:

```
        abracadabra,
    abra cad · abra,
    a\cdotbracadabr •a,
    a
a}\cdot\textrm{br}\cdot\textrm{a}\cdot\textrm{cad}\cdot\textrm{a}\cdot\textrm{br}\cdot\textrm{a}
```

The last BP-factorization is of width 7 and has the longest width; thus it is the largest BP-factorization of abracadabra.

Let w be a length- n word. Suppose $w_{m} \cdots w_{1} w_{0} w_{1} \cdots w_{m}$ is the largest BP-factorization of w. Goto et al. [3] showed that w_{i} is the shortest border of $w_{i} \cdots w_{1} w_{0} w_{1} \cdots w_{i}$ where $i \geq 1$. This means that we can compute the largest BP-factorization of w by greedily "peeling off" the shortest borders of central factors until you hit an unbordered word or the empty word.

The rest of the paper is structured as follows. In Section 2 we give a recurrence for the number of length- n words with largest BP-factorization of width t. In Section 3 we

[^1]show that the expected width of the largest BP-factorization of a length- n word tends to a constant. In Section 4 we consider smallest BP-factorizations in the sense that one "peels off" the longest non-overlapping border. We say a border u of a word w is non-overlapping if $|u| \leq|w| / 2$; otherwise u is overlapping. Finally, in Section 5 we present some results on words with a unique border and show that they are connected to words whose smallest and largest BP-factorizations are the same.

2 Counting largest BP-factorizations

In this section, we prove a recurrence for the number $\operatorname{LBP}_{k}(n, t)$ of length- n words over Σ_{k} with largest BP-factorization of width t. See Table 1 for sample values of $\operatorname{LBP}_{2}(n, t)$ for small n, t. For the following theorem, recall the definition of u_{n} from Equation 1.

Theorem 2. Let $n, t \geq 0$, and $k \geq 2$ be integers. Then

$$
\operatorname{LBP}_{k}(n, t)= \begin{cases}\sum_{i=1}^{(n-t) / 2+1} u_{i} \operatorname{LBP}_{k}(n-2 i, t-2), & \text { if } n, t \text { even; } \\ \sum_{i=1}^{(n-t+1) / 2} u_{2 i} \operatorname{LBP}_{k}(n-2 i, t-1), & \text { if } n \text { even, } t \text { odd } ; \\ 0, & \text { if } n \text { odd, } t \text { even } ; \\ \sum_{i=1}^{(n-t) / 2+1} u_{2 i-1} \operatorname{LBP}_{k}(n-2 i+1, t-1), & \text { if } n, t \text { odd }\end{cases}
$$

where

$$
\begin{aligned}
\operatorname{LBP}_{k}(0,0) & =1 \\
\operatorname{LBP}_{k}(2 n, 2) & =u_{n} \\
\operatorname{LBP}_{k}(n, 1) & =u_{n}
\end{aligned}
$$

Proof. Let w be a length- n word whose largest BP-factorization $w_{m} \cdots w_{1} w_{0} w_{1} \cdots w_{m}$ is of width t. Clearly $\operatorname{LBP}_{k}(0,0)=1$. We know that each block in a largest BP-factorization is unbordered, since each block is a shortest border of some central factor. This immediately implies $\operatorname{LBP}_{k}(n, 1)=u_{n}$ and $\operatorname{LBP}_{k}(2 n, 2)=u_{n}$.

Now we take care of the other cases.

- Suppose n, t are even. Then by removing both instances of w_{1} from w, we get $w^{\prime}=$ $w_{m} \cdots w_{2} w_{2} \cdots w_{m}$, which is a length- $\left(n-2\left|w_{1}\right|\right)$ word whose largest BP-factorization is of width $t-2$. This mapping is clearly reversible, since all blocks in a largest BPfactorization are unbordered, including w_{1}. Thus summing over all possible w_{1} and all length- $\left(n-2\left|w_{1}\right|\right)$ words with largest BP-factorization of width $t-2$ we have

$$
\operatorname{LBP}_{k}(n, t)=\sum_{i=1}^{(n-t) / 2+1} u_{i} \operatorname{LBP}_{k}(n-2 i, t-2)
$$

- Suppose n is even and t is odd. Then by removing w_{0} from w, we get $w^{\prime}=$ $w_{m} \cdots w_{1} w_{1} \cdots w_{m}$, which is a length- $\left(n-\left|w_{0}\right|\right)$ word whose largest BP-factorization is of width $t-1$. This mapping is reversible for the same reason as in the previous case. The word w^{\prime} is of even length since $\left|w^{\prime}\right|=2\left|w_{1} \cdots w_{m}\right|$. Since n is even and $\left|w^{\prime}\right|$ is even, we must have that $\left|w_{0}\right|$ is even as well. Thus summing over all possible w_{0} and all length- $\left(n-\left|w_{0}\right|\right)$ words with largest BP-factorization of width $t-1$, we have

$$
\operatorname{LBP}_{k}(n, t)=\sum_{i=1}^{(n-t+1) / 2} u_{2 i} \operatorname{LBP}_{k}(n-2 i, t-1)
$$

- Suppose n is odd and t is even. Then the length of w is $2\left|w_{1} \cdots w_{m}\right|$, which is even, a contradiction. Thus $\operatorname{LBP}_{k}(n, t)=0$.
- Suppose n, t are odd. Then by removing w_{0} from w, we get $w^{\prime}=w_{m} \cdots w_{1} w_{1} \cdots w_{m}$, which is a length- $\left(n-\left|w_{0}\right|\right)$ word whose largest BP-factorization is of width $t-1$. This mapping is reversible for the same reasons as in the previous cases. Since n is odd and $\left|w^{\prime}\right|$ is even (proved in the previous case), we must have that $\left|w_{0}\right|$ is odd. Thus summing over all possible w_{0} and all length- $\left(n-\left|w_{0}\right|\right)$ words with largest BP-factorization of width $t-1$, we have

$$
\sum_{i=1}^{(n-t) / 2+1} u_{2 i-1} \operatorname{LBP}_{k}(n-2 i+1, t-1)
$$

t	1	2	3	4	5	6	7	8	9	10
n		284	12	224	40	168	72	96	64	32
32										
10	568	0	472	0	416	0	336	0	192	0
11	1116	20	856	88	656	176	448	224	224	160
12	2232	0	1752	0	1488	0	1248	0	896	0
13	4424	40	3328	176	2544	432	1856	640	1152	640
15	8848	0	6736	0	5440	0	4576	0	3584	0
16	17622	74	13100	372	9896	984	7408	1744	5088	2080
17	35244	0	26348	0	20536	0	16784	0	13664	0
18	70340	148	51936	760	38824	2248	29152	4416	21088	6240
19	140680	0	104168	0	79168	0	62800	0	51008	0
20	281076	284	206744	1592	153344	4992	114688	10912	84704	17312

Table 1: Some values of $\operatorname{LBP}_{2}(n, t)$ for n, t where $10 \leq n \leq 20$ and $1 \leq t \leq 10$.

3 Expected width of largest BP-factorization

In this section, we show that the expected width $E_{n, k}$ of the largest BP-factorization of a length- n word over Σ_{k} is bounded by a constant. From the definition of expected value, it follows that

$$
E_{n, k}=\frac{1}{k^{n}} \sum_{i=1}^{n} i \cdot \operatorname{LBP}_{k}(n, i)
$$

Table 2 shows the behaviour of $\lim _{n \rightarrow \infty} E_{n, k}$ as k increases.
Lemma 3. Let $k \geq 2$ and $n \geq t \geq 1$ be integers. Then

$$
\frac{\operatorname{LBP}_{k}(n, t)}{k^{n}} \leq \frac{1}{k^{t / 2-1}}
$$

Proof. Let w be a length- n word whose largest BP-factorization $w_{m} \cdots w_{1} w_{0} w_{1} \cdots w_{m}$ is of width t. Since w_{i} is non-empty for every $1 \leq i \leq m$, we have that $\operatorname{LBP}_{k}(n, t) \leq k^{n-m} \leq$ $k^{n-t / 2+1}$. So

$$
\frac{\operatorname{LBP}_{k}(n, t)}{k^{n}} \leq \frac{1}{k^{t / 2-1}}
$$

for all $n \geq t \geq 1$.
Theorem 4. The limit $E_{k}=\lim _{n \rightarrow \infty} E_{n, k}$ exists for all $k \geq 2$.
Proof. Follows from the definition of $E_{n, k}$, Lemma 3, and the direct comparison test for convergence.

Interpreting E_{k} as a power series in k^{-1}, we empirically observe that E_{k} is approximately equal to

$$
1+\frac{2}{k}+\frac{4}{k^{2}}+\frac{6}{k^{3}}+\frac{10}{k^{4}}+\frac{16}{k^{5}}+\frac{24}{k^{6}}+\frac{38}{k^{7}}+\frac{58}{k^{8}}+\frac{88}{k^{9}}+\cdots .
$$

We conjecture the following about E_{k}.
Conjecture 5. Let $k \geq 2$. Then

$$
E_{k}=1+\sum_{i=1}^{\infty} a_{i} k^{-i}
$$

where the sequence $\left(a_{n} / 2\right)_{n \geq 1}$ is A274199 in the On-Line Encyclopedia of Integer Sequences (OEIS) [10].

k	$\approx E_{k}$
2	6.4686
3	2.5908
4	1.9080
5	1.6314
6	1.4827
7	1.3902
8	1.3272
9	1.2817
10	1.2472
\vdots	\vdots
100	1.0204

Table 2: Asymptotic expected width of a word's largest BP-factorization.

Cording et al. [11] proved that the expected length of the longest unbordered factor in a word is $\Theta(n)$. Taking this into account, it is not surprising that the expected length of the largest BP-factorization of a word tends to a constant.

4 Smallest BP-factorization

A word w, seen as a block, clearly satisfies the definition of a BP-factorization. Thus, taken literally, the smallest BP-factorization for all words is of width 1. But this is not very interesting, so we consider a different definition instead. A border u of a word w is non-overlapping if $|u| \leq|w| / 2$; otherwise u is overlapping. We say that the smallest BPfactorization of a word w is a BP-factorization $w=w_{m} \cdots w_{1} w_{0} w_{1} \cdots w_{m}$ where each w_{i} is the longest non-overlapping border of $w_{i} \cdots w_{1} w_{0} w_{1} \cdots w_{i}$, except w_{0}, which is either empty or unbordered. For example, going back to Example 1, the smallest BP-factorization of abracadabra is abra cad \cdot abra and the smallest BP-factorization of reappear is $r \cdot e a \cdot p$. p•ea•r.

A natural question to ask is: what is the maximum possible width $f_{k}(n)$ of the smallest BP-factorization of a length- n word? Through empirical observation, we arrive at the following conjectures:

- We have $f_{2}(8 n+i)=6 n+i$ for i with $0 \leq i \leq 5$ and $f_{2}(8 n+6)=f_{2}(8 n+7)=6 n+5$.
- We have $f_{k}(n)=n$ for $k \geq 3$.

To calculate $f_{k}(n)$, two things are needed: an upper bound on $f_{k}(n)$, and words that witness the upper bound.

Theorem 6. Let $l \geq 0$ be an integer. Then $f_{2}(8 l+i)=6 l+i$ for i with $0 \leq i \leq 5$ and $f_{2}(8 l+6)=f_{2}(8 l+7)=6 l+5$.

Proof. Let $n \geq 0$ be an integer. We start by proving lower bounds on $f_{2}(n)$. Suppose $n=8 l$ for some $l \geq 0$. Then the width of the smallest BP-factorization of

$$
(0101)^{l}(1001)^{l}
$$

is $6 l$, so $f_{2}(8 l) \geq 6 l$. To see this, notice that the smallest BP-factorization of 01011001 is $01 \cdot 0 \cdot 1 \cdot 1 \cdot 0 \cdot 01$, and therefore is of width 6 . Suppose $n=8 l+i$ for some i with $1 \leq i \leq 7$. Then one can take $(0101)^{l}(1001)^{l}$ and insert either $0,00,010,0110,01010,010110$, or 0110110 to the middle of the word to get the desired length.

Now we prove upper bounds on $f_{2}(n)$. Let $t \leq n$ be a positive integer. Let w be a lengthn word whose largest BP-factorization $w_{m} \cdots w_{1} w_{0} w_{1} \cdots w_{m}$ is of width t. One can readily verify that $f_{2}(0)=0, f_{2}(1)=1, f_{2}(2)=2, f_{2}(3)=3, f_{2}(4)=4$, and $f_{2}(5)=f_{2}(6)=f_{2}(7)=$ 5 through exhaustive search of all binary words of length <8. Suppose $m \geq 4$, so $n \geq t \geq 8$. Then we can write $w=w_{m} w_{m-1} w_{m-2} \cdots w_{m-2} w_{m-1} w_{m}$ where $\left|w_{m-2}\right|,\left|w_{m-1}\right|,\left|w_{m}\right|>0$. It is easy to show that $\left|w_{m-2} w_{m-1} w_{m}\right| \geq 4$ by checking that all binary words of length <8 do not admit a smallest BP-factorization of width 6 . In the worst case, we can peel off prefixes and suffixes of length 4 while accounting for the 6 blocks they add to the BP-factorization until we hit the middle core of length <8. Thus, we have $f_{2}(8 l+i) \leq 6 l+j$ where j is the width of the smallest BP-factorization of the middle core, which is of length i. We have already computed $f_{2}(i)$ for $0 \leq i \leq 7$, so the upper bounds follow.

Theorem 7. Let $n \geq 0$ and $k \geq 3$ be integers. Then $f_{k}(n)=n$.
Proof. Clearly $f_{k}(n) \leq n$. We prove $f_{k}(n) \geq n$. If n is divisible by 6 , then consider the word $(012)^{n / 6}(210)^{n / 6}$. If n is not divisible by 6 , then take $(012)^{\lfloor n / 6\rfloor}(210)^{\lfloor n / 6\rfloor}$ and insert either $0,00,010,0110$, or 01010 in the middle of the word. When calculating the smallest BP-factorization of the resulting words, it is easy to see that at each step we are removing a border of length 1 . Thus, their largest BP-factorization is of width n.

5 Equal smallest and largest BP-factorizations

Recall back to Example 1, that abracadabra has distinct smallest and largest BP-factorizations, namely abra•cad•abra and $\mathrm{a} \cdot \mathrm{br} \cdot \mathrm{a} \cdot \mathrm{cad} \cdot \mathrm{a} \cdot \mathrm{br} \cdot \mathrm{a}$. However, the word alfalfa has the same smallest and largest BP-factorizations, namely $a \cdot l f \cdot a \cdot l f \cdot a$. Under what conditions are the smallest and largest BP-factorizations of a word the same? Looking at unique borders seems like a good place to start, since the shortest border and longest non-overlapping border coincide when a word has a unique border. However, the converse is not true - just consider the previous example alfalfa. The shortest border and longest non-overlapping border are both a, but a is not a unique border of alfalfa.

In Theorem 8 we characterize all words whose smallest and largest BP-factorization coincide.

Theorem 8. Let $m, m^{\prime} \geq 1$ be integers. Let w be a word with smallest BP-factorization $w_{m^{\prime}}^{\prime} \cdots w_{1}^{\prime} w_{0}^{\prime} w_{1}^{\prime} \cdots w_{m^{\prime}}^{\prime}$ and largest BP-factorization $w_{m} \cdots w_{1} w_{0} w_{1} \cdots w_{m}$. Then $m=m^{\prime}$
and $w_{i}=w_{i}^{\prime}$ for all $i, 0 \leq i \leq m$ if and only if for all $i \neq 2,0<i \leq m$, we have that w_{i} is the unique border of $w_{i} \cdots w_{1} w_{0} w_{1} \cdots w_{i}$ and for $i=2$ we have that either

1. w_{2} is the unique border of $w_{2} w_{1} w_{0} w_{1} w_{2}$, or
2. $w_{2} w_{1} w_{0} w_{1} w_{2}=w_{0} w_{1} w_{0} w_{1} w_{0}$ where w_{0} is the unique border of $w_{0} w_{1} w_{0}$.

Proof.
\Longrightarrow : Let i be an integer such that $0<i \leq m$. Let $u_{i}=w_{i} \cdots w_{1} w_{0} w_{1} \cdots w_{i}$. Since w_{i} is both the shortest border and longest non-overlapping border of u_{i} (i.e., $w_{i}=w_{i}^{\prime}$), we have that u_{i} has exactly one border of length $\leq\left|u_{i}\right| / 2$. Thus, either w_{i} is the unique border of u_{i}, or u_{i} has a border of length $>\left|u_{i}\right| / 2$. If w_{i} is the unique border of u_{i}, then we are done. So suppose that u_{i} has a border of length $>\left|u_{i}\right| / 2$. Let v_{i} be the shortest such border. We have that w_{i} is both a prefix and suffix of v_{i}. In fact, w_{i} must be the unique border of v_{i}. Otherwise we contradict the minimality of v_{i}, or the assumption that w_{i} is both the shortest border and longest non-overlapping border of u_{i}. Since w_{i} is unbordered, it cannot overlap itself in v_{i} and w_{i}. So we can write $v_{i}=w_{i} y w_{i}$ for some word y where $u_{i}=w_{i} y w_{i} y w_{i}$, or $u_{i}=w_{i} x w_{i} x^{\prime} w_{i} x^{\prime \prime} w_{i}$ such that $y=x w_{i} x^{\prime}=x^{\prime} w_{i} x^{\prime \prime}$. If $u_{i}=w_{i} x w_{i} x^{\prime} w_{i} x^{\prime \prime} w_{i}$, then we see that $w_{i} x^{\prime}$ is a suffix of y and $x^{\prime} w_{i}$ is a prefix of y, implying that $w_{i} x^{\prime} w_{i}$ is a new smaller border of u_{i}. This either contradicts the assumption that v_{i} is the shortest border of length $>\left|u_{i}\right| / 2$, or the assumption that u_{i} has exactly one border of length $\leq\left|u_{i}\right| / 2$. Thus, we have that $u_{i}=w_{i} y w_{i} y w_{i}$. The shortest border and longest non-overlapping border of $y w_{i} y$ must be y, by assumption. Additionally, w_{i} is unbordered, so u_{i} is of width 5 and $i=2$. This implies that $w_{i}=w_{2}=w_{0}$ and $y=w_{1}$.
\Longleftarrow : Let i be an integer such that $0<i \leq m$. We omit the case when $i=0$, since proving $w_{i}=w_{i}^{\prime}$ for all other i is sufficient. Since w_{i} is the unique border of $u_{i}=w_{i} \cdots w_{1} w_{0} w_{1} \cdots w_{i}$, we have that the shortest border and longest non-overlapping border of u_{i} is w_{i}. In other words, we have that $w_{i}=w_{i}^{\prime}$. Suppose $i=2$ and $u_{2}=w_{2} w_{1} w_{0} w_{1} w_{2}=w_{0} w_{1} w_{0} w_{1} w_{0}$ where w_{0} is the unique border of $w_{0} w_{1} w_{0}$. Since w_{0} is the unique border of $w_{0} w_{1} w_{0}$, it is also the shortest border of u_{2}. Additionally, the next longest border of u_{2} is $w_{0} w_{1} w_{0}$, which is overlapping. So w_{0} is also the longest non-overlapping border of u_{2}. Thus $w_{2}=w_{2}^{\prime}$.

Just based on this characterization, finding a recurrence for the number of words with a coinciding smallest and largest BP-factorization seems hard. So we turn to a different, related problem: counting the number of words with a unique border.

5.1 Unique borders

Harju and Nowotka [12] counted the number $B_{k}(n)$ of length- n words over Σ_{k} with a unique border, and the number $B_{k}(n, t)$ of length- n words over Σ_{k} with a length- t unique border. However, through personal communication with the authors, a small error in one of the proofs leading up to their formula for $B_{k}(n, t)$ was discovered. Thus, the formula for $B_{k}(n, t)$ as stated in their paper is incorrect. In this section, we present the correct recurrence for the
number of length- n words with a length- t unique border. We also show that the probability a length- n word has a unique border tends to a constant. See A334600 in the OEIS [10] for the sequence $\left(B_{2}(n)\right)_{n \geq 0}$.

Suppose w is a word with a unique border u. Then u must be unbordered, and $|u|$ must not exceed half the length of w. If either of these were not true, then w would have more than one border. By combining these ideas, we get Theorem 9 and Theorem 10.

Theorem 9. Let $n>t \geq 1$ be integers. Then the number of length-n words with a unique length-t border satisfies the recurrence

$$
B_{k}(n, t)= \begin{cases}0, & \text { if } n<2 t ; \\ u_{t} k^{n-2 t}-\sum_{i=2 t}^{\lfloor n / 2\rfloor} B_{k}(i, t) k^{n-2 i}, & \text { if } n \geq 2 t \text { and } n+t \text { odd } \\ u_{t} k^{n-2 t}-B_{k}((n+t) / 2, t)-\sum_{i=2 t}^{\lfloor n / 2\rfloor} B_{k}(i, t) k^{n-2 i}, & \text { if } n \geq 2 t \text { and } n+t \text { even }\end{cases}
$$

Proof. Let w be a length- n word with a unique length- t border u. Since u is the unique border of w, it is unbordered. Thus, we can write $w=u v u$ for some (possibly empty) word v. For $n<2 t$, we have that $B_{k}(n, t)=0$ since u is unbordered and thus cannot overlap itself in w.

Suppose $n \geq 2 t$. Let $\overline{B_{k}}(n, t)$ denote the number of length- n words that have a length- t unbordered border and have a border of length $>t$. Clearly $B_{k}(n, t)=u_{t} k^{n-2 t}-\overline{B_{k}}(n, t)$. Suppose w has another border u^{\prime} of length $>t$. Furthermore, suppose that there is no other border $u^{\prime \prime}$ with $|u|<\left|u^{\prime \prime}\right|<\left|u^{\prime}\right|$. Then u is the unique border of u^{\prime}. Since u is the shortest border, we have $|u| \leq n / 2$. But we could possibly have $\left|u^{\prime}\right|>n / 2$. The only possible way for $\left|u^{\prime}\right|$ to exceed $n / 2$ is if $w=u v^{\prime} u v^{\prime} u$ for some (possibly empty) word v. But this is only possible if $n+t$ is even; otherwise we cannot place u in the centre of w. When $n+t$ is odd, we compute $\overline{B_{k}}(n, t)$ by summing over all possibilities for u^{\prime} (i.e., $2 t \leq\left|u^{\prime}\right| \leq\lfloor n / 2\rfloor$) and the middle part of w (i.e., $v^{\prime \prime}$ where $w=u^{\prime} v^{\prime \prime} u^{\prime}$). This gives us the recurrence,

$$
\overline{B_{k}}(n, t)=\sum_{i=2 t}^{\lfloor n / 2\rfloor} B_{k}(i, t) k^{n-2 i}
$$

When $n+t$ is even, we compute $\overline{B_{k}}(n, t)$ in the same fashion, except we also include the case where $\left|u^{\prime}\right|=(n+t) / 2$. This gives us the recurrence,

$$
\overline{B_{k}}(n, t)=B_{k}((n+t) / 2, t)+\sum_{i=2 t}^{\lfloor n / 2\rfloor} B_{k}(i, t) k^{n-2 i} .
$$

Theorem 10. Let $n \geq 2$ be an integer. Then the number of length-n words with a unique border is

$$
B_{k}(n)=\sum_{t=1}^{\lfloor n / 2\rfloor} B_{k}(n, t) .
$$

5.2 Limiting values

We show that the probability that a random word of length n has a unique border tends to a constant. Table 3 shows the behaviour of this probability as k increases.

Let $P_{n, k}$ be the probability that a random word of length n has a unique border. Then

$$
P_{n, k}=\frac{B_{k}(n)}{k^{n}}=\frac{1}{k^{n}} \sum_{i=1}^{\lfloor n / 2\rfloor} B_{k}(n, i) .
$$

Lemma 11. Let $k \geq 2$ and $n \geq 2 t \geq 2$ be integers. Then

$$
\frac{B_{k}(n, t)}{k^{n}} \leq \frac{1}{k^{t}}
$$

Proof. Let w be a length- n word. Suppose w has a unique border of length t. Since $t \leq n / 2$, we can write $w=u v u$ for some words u and v where $|u|=t$. But this means that $B_{k}(n, t) \leq$ k^{n-t}, and the lemma follows.

Theorem 12. Let $k \geq 2$ be an integer. Then the limit $P_{k}=\lim _{n \rightarrow \infty} P_{n, k}$ exists.
Proof. Follows from the definition of $P_{n, k}$, Lemma 11, and the direct comparison test for convergence.

k	$\approx P_{k}$
2	0.5155
3	0.3910
4	0.2922
5	0.2302
6	0.1890
7	0.1599
8	0.1384
9	0.1219
10	0.1089
\vdots	\vdots
100	0.0101

Table 3: Probability that a word has a unique border.

References

[1] P. T. Nielsen. A note on bifix-free sequences. IEEE Trans. Inform. Theory, IT-19:704706, 1973.
[2] The 2015 British Informatics Olympiad (Round 1 Question 1). https://olympiad. org.uk/2015/index.html.
[3] K. Goto, I. Tomohiro, H. Bannai, and S. Inenaga. Block palindromes: A new generalization of palindromes. In T. Gagie, A. Moffat, G. Navarro, and E. Cuadros-Vargas, editors, String Processing and Information Retrieval, volume 11147 of Lecture Notes in Computer Science, pages 183-190, Cham, 2018. Springer International Publishing.
[4] K. Mahalingam, A. Maity, P. Pandoh, and R. Raghavan. Block reversal on finite words. Theoret. Comput. Sci., 894:135-151, 2021.
[5] K. Mahalingam, A. Maity, and P. Pandoh. Rich words in the block reversal of a word, 2023. arXiv:2302.02109.
[6] R. Kolpakov and G. Kucherov. Searching for gapped palindromes. Theoret. Comput. Sci., 410(51):5365-5373, 2009.
[7] M. Régnier. Enumeration of bordered words, le langage de la vache-qui-rit. RAIROTheor. Inf. Appl., 26(4):303-317, 1992.
[8] A. E. Frid, S. Puzynina, and L. Q. Zamboni. On palindromic factorization of words. Adv. in Appl. Math., 50(5):737-748, 2013.
[9] O. Ravsky. On the palindromic decomposition of binary words. J. Autom. Lang. Comb., 8(1):75-83, 2003.
[10] N. J. A. Sloane et al. OEIS Foundation Inc. (2022), The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
[11] P. H. Cording, T. Gagie, M. B. T. Knudsen, and T. Kociumaka. Maximal unbordered factors of random strings. Theoret. Comput. Sci., 852:78-83, 2021.
[12] T. Harju and D. Nowotka. Counting bordered and primitive words with a fixed weight. Theoret. Comput. Sci., 340(2):273-279, 2005.

[^0]: *Department of Math/Stats, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada; d.gabric@uwinnipeg.ca.
 ${ }^{\dagger}$ School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada; shallit@uwaterloo.ca.

[^1]: ${ }^{1}$ Largest BP-factorizations also appear in https://www.reddit.com/r/math/comments/ga2iyo/i_ just_defined_the_palindromity_function_on/.

