
Avoidance of split overlaps

Daniel Gabric, Jeffrey Shallit∗, and Xiao Feng Zhong
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

Canada
dgabric@uwaterloo.ca

shallit@uwaterloo.ca

xiao.f.zhong@edu.uwaterloo.ca

Abstract

We generalize Axel Thue’s familiar definition of overlaps in words, and observe that
there are no infinite words avoiding split occurrences of these generalized overlaps. We
give estimates for the length of the longest finite word that avoids split overlaps. Along
the way we prove a useful theorem about repeated disjoint occurrences in words — an
interesting natural variation on the classical de Bruijn sequences.

1 Introduction

In this paper, we are concerned with words over a finite alphabet Σ of cardinality k ≥ 1;
more specifically, avoiding certain kinds of repetitions in them.

Two kinds of repetitions that have been studied for more than a hundred years are squares
and overlaps [14, 1]. A square is a finite nonempty word of the form xx (such as the English
word murmur). Another type of repetition is the α-power. We say a word w is an α-power,
for α = p/q, a rational number, if |w| = p and w has period q. (We say a word w has period
q ≥ 1 if w[i] = w[i+ q] for all i for which this makes sense.) Thus alfalfa is a (7/3)-power.
A word y is a factor of a word w if w = xyz for words x, z (possibly empty). When we speak
about a word “avoiding α-powers”, we mean it has no factor that is a β-power, for all β ≥ α.
The smallest period of a word w is sometimes called the period, and is written per(w).

An overlap is a finite word of the form axaxa for a a single letter, and x a (possibly
empty) word, such as the French word entente. An overlap can be viewed as just slightly
more than a square: it consists of two repetitions of a nonempty word w, followed by the
first letter of w.
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The term “overlap” comes from the following “folk” observation: say two distinct occur-
rences of a length-n factor x in w, say x = w[i..i + n − 1] = w[j..j + n − 1] with i < j,
“overlap each other” if 0 < j − i < n.a
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w[j+n-1]w[j]

w[i+n-1]w[i]

x =

x =

w =

Figure 1: Overlapping factors

Proposition 1. If w contains two distinct occurrences of x that overlap each other, then w
contains an overlap. Then we have the following result.

Proof. Define y = w[i..j − 1], t = w[j..i + n − 1], and z = w[i + n..j + n − 1] and examine
Figure 1.

Each of these three words is nonempty, and x = yt = tz. By the Lyndon-Schützenberger
theorem [10], it follows that there exist words u, v with u nonempty, and an integer e ≥ 0,
such that y = uv, t = (uv)eu, and z = vu. Thus w[i..j + n − 1] = ytz = (uv)e+2u, which
contains an overlap.

This suggests the following natural generalization of overlap: a t-overlap is a word of the
form xxx′, where x is a nonempty word of length at least t, and x′ is the first t letters of x.
For example, the unfamiliar English word prelinpinpin contains a suffix that is a 2-overlap,
namely inpinpin. Note that a 0-overlap is a square, and a 1-overlap is an ordinary overlap.
Of course, a t-overlap contains a t′-overlap for all t′ < t.

Thue proved [14, 1] that one can avoid 1-overlaps over any alphabet containing at least
two letters. Here by “avoid” we mean “there exists an infinite word containing no 1-overlaps”
or, equivalently, “there exist infinitely many finite words containing no 1-overlaps”. Since
for t ≥ 1 every t-overlap contains a 1-overlap, Thue’s construction also shows it is possible
to avoid t-overlaps, t ≥ 1, over any alphabet with at least two letters.

So instead, in this paper we consider split occurrences of repetitions. A split occurrence
of a repetition is a word of the form xyz, where xz forms the repetition. For example, the
English word contentment contains a split occurrence of the 2-overlap ntentent, which
arises from the factor xyz, where x = ntent, y = m, z = ent. We also investigate the
avoidance of reversed split occurrences of repetitions. A reversed split occurrence of a rep-
etition is a word of the form xyz, where zx forms the repetition. For example, the English
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word independent contains a reversed split 1-overlap: it has the factor xyz, where x = nde,
y = p, and z = ende, giving the overlap zx = endende.

It follows from known results that there exist infinite words avoiding split occurrences
of α-powers, for any rational number α > 2 [11]. To see this, take the alphabet size k
sufficiently large that there exists an infinite word w over Σk = {0, 1, . . . , k − 1} avoiding
α/2 powers. (By Dejean’s theorem [5, 2, 13] this is possible.) Suppose x · · · z is a factor of
w that is a split occurrence of a β power for β ≥ α > 2. Then clearly either x is a ≥ β/2
power or z is, a contradiction. The same argument works for reverse split occurrences.

In contrast, there is a very simple proof of the following negative result, due to Pascal
Ochem. We are indebted to him for allowing us to reproduce his proof here.

Proposition 2. There are no infinite words over a finite alphabet avoiding split occurrences
or reversed split occurrences of t-overlaps.

Proof. Let v be any infinite word. Recall that an infinite word is recurrent if every factor
that occurs in it, occurs infinitely often. According to a theorem of de Luca and Varricchio
[9, Theorem 2.5], for all infinite words v, there is a recurrent word w such that every finite
factor of w is a factor of v. Let x be any length-t factor of w. Since x is also recurrent in
w, it must be that w contains some factor of the form xyx. Since xyx is recurrent in w, it
must be that w contains a factor of the form xyxzxyx. This contains both a split occurrence
and a reversed split occurrence of the t-overlap xyxyx, which must occur in w and hence in
v.

The goal of this paper is to obtain bounds on the length of the longest finite words
avoiding split and reversed split overlaps.

2 Some useful results on primitive words and bordered

words

We call a nonempty word w primitive if w cannot be written in the form xk for an integer
k ≥ 2; see, for example, [6].

Lemma 3. Let Ak(n, p) denote the number of length-n words over Σk with smallest period p,
and let ψk(n) denote the number of primitive length-n words over Σk. Then Ak(n, p) = ψk(p)
for 1 ≤ p ≤ n

2
+ 1.

Proof. We claim that every length-n word w with shortest period p can be written in the
form w = xix′, where x′ is a prefix of x and |x| = p and x primitive. For if x were not
primitive, say x = yj for some j ≥ 2, then p could not be the shortest period.

We now claim that if x is primitive and 1 ≤ p ≤ n
2

+ 1, then w = xn/p has shortest
period p. Suppose to the contrary that w has shortest period q < p. Since n ≥ p + q − 1,
by the Fine-Wilf theorem [7], w also has the period gcd(p, q). If q divides p, then x was not
primitive, a contradiction. Otherwise gcd(p, q) < q, a contradiction.
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A border of a word w is a nonempty word x, x 6= w, such that x is both a prefix and
suffix of w. Thus entanglement has the border ent. If a word has a border, it is called
bordered, and otherwise it is called unbordered. It is easy to see that if a word of length n
has a border, it must have a border of length ≤ n/2.

Lemma 4. For k ≥ 2, n ≥ 1, there are at least kn(1 − 1/k − 1/k2) unbordered words of
length n over a k-letter alphabet.

Proof. Let uk(n) denote the number of unbordered words of length n over a k-letter alphabet.
It follows from the recurrence for uk(n) given in [12] that uk(n) is a polynomial of degree
n in k. By explicit computation of these polynomials for n = 1, 2, . . . , 12, we can easily
verify the inequality uk(n) ≥ kn(1 − 1/k − 1/k2) for n ≤ 12. In particular, uk(12) =
k12 − k11 − k10 + k6 + k5 − k2.

Now assume n > 12. For each unbordered word w of length 12, write w = xz with
|x| = |z| = 6, and consider the words xyz of length n, where y is an arbitrary word of length
n − 12. There are uk(12)kn−12 such words. Each such word is unbordered, unless it has a
border of length i for 6 < i ≤ n/2. But the total number of words with border length i
satisfying 6 < i ≤ n/2 is at most

kn−7 + kn−8 + · · ·+ kn/2 ≤ (kn−6 − 1)/(k − 1).

Therefore, there are least

uk(12)kn−12−(kn−6−1)/(k−1) = kn(1−1/k−1/k2+1/k6+1/k7−1/k10)−(kn−6−1)/(k−1)

unbordered words of length n for n > 12. Since kn/k6 ≥ (kn−6−1)/(k−1) and kn−7 ≥ kn−10,
the desired bound follows.

3 Disjoint occurrences

Let Σk = {0, 1, . . . , k − 1} be an alphabet of k ≥ 1 letters. Let Σn
k denote the set of all

length-n words over the alphabet Σk. It is known that for every k ≥ 1 and n ≥ 1, there
exists a word of length kn+n−1 that contains every length-n word exactly once as a factor;
such words are called de Bruijn words of order n; see [3, 4]. This bound of kn + n − 1
is optimal, because from the pigeonhole principle, it follows that if w is a word of length
≥ kn +n, then w must contain at least two different occurrences of some word x of length n.

However, these two different occurrences of x could overlap each other in w. If two
distinct occurrences do not overlap, we say they are disjoint.

If we insist on having two disjoint occurrences, we get a different bound. For example,
there are binary words of length 7 that do not contain two disjoint occurrences of the same
length-2 word, such as 0111000. Let us define C(k, n) to be the length of the longest word
over Σk having the property that there are no two disjoint occurrences of the same length-n
word. By considering disjoint occurrences of length-n blocks, the pigeonhole principle easily
gives the bound C(k, n) < n(kn + 1). We now obtain some better bounds on C(k, n).

We need a lemma.
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Lemma 5. Let x,w be words with |x| = n. Suppose w contains m occurrences of x, but not
two or more disjoint occurrences. Then m ≤ dn/ per(x)e. Furthermore, for each individual
x, this upper bound is achievable.

Proof. Let w contain the maximum possible number of overlapping occurrences of the length-
n word x, and no disjoint occurrences of x. Let d be the shortest distance between two
consecutive occurrences of x in w. If there are m overlapping occurrences, then the last
occurs at distance at least d(m− 1) from the first. If d(m− 1) ≥ n, then the last occurrence
does not overlap the first, so d(m − 1) < n. It follows that m < n/d + 1, and since t is an
integer, we have m ≤ dn/de.

We now show that d = per(x). Two overlapping occurrences of x with the shortest
distance between them correspond to writing x = yt = tz for some y, t, z (with t the overlap),
with 1 < |t| < n, and minimizing |y|; see Figure 1. Now, from the Lyndon-Schützenberger
theorem [10], it follows that there exist u, v with u nonempty and an integer e ≥ 0 such that
that y = uv, t = (uv)eu, and z = vu. Hence y = uv is a period of x; to minimize y we take
y to be the shortest period of x.

We have now shown that m ≤ dn/ per(x)e. It remains to see that this bound is always
achievable. Let y be the shortest period of x, and write x = yfu, where u is a nonempty
prefix of y, possibly equal to y itself. Then y = uv for some (possibly empty) v. Consider
the word w = (uv)2fu; it is easy to see that x = (uv)fu overlaps itself at least f + 1 times
in this w. Since f |y| < n ≤ (f + 1)|y|, it follows that f + 1 = dn/ per(x)e.

Theorem 6. We have

C(k, n) ≤

∑
w∈Σn

k

⌈
n

per(w)

⌉+ n− 1.

Proof. Let w be a longest word having no disjoint occurrences of the same length-n factor.
Let us now count the number of occurrences of each length-n factor x in w. By Lemma 5,
w can contain at most dn/ per(x)e occurrences of x. Thus, in the worst case, w can have at
most

∑
x∈Σn

k
d n

per(x)
e total occurrences of length-n words. Thus the word can be of length at

most
(∑

x∈Σn
k
d n

per(x)
e
)

+ n− 1.

Corollary 7. For k ≥ 2 we have C(k, n) ≤ kn(1+1/k+1/k2)+n(kn/2+1−1)/(k−1)+n−1.

Proof. We split the sum
∑

x∈Σn
k
d n

per(x)
e into three parts: one where per(x) ≤ n/2, one where

n/2 < per(x) < n, and one where per(x) = n.
From Lemma 3 above, the number of length-n words x with smallest period p ≤ n/2

is ψ(k, p), the number of primitive words of length p over a k-letter alphabet. Write A =∑
1≤p≤n/2 ψ(k, p) and B =

∑
1≤p≤n/2 ψ(k, p)dn/pe. It is known that ψ(k, n) =

∑
d|n µ(d)kn/d,

where µ is the Möbius function from number theory (see, e.g., [6, p. 245]), but the much
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weaker bound ψ(k, n) ≤ kn suffices for our purposes here. Thus B ≤ n(k+k2 + · · ·+kn/2) ≤
n(kn/2+1 − 1)/(k − 1).

The number of words with period n is uk(n), the number of unbordered words of length
n. From Lemma 4 we have uk(n) ≥ kn(1− 1/k − 1/k2). Thus we have∑

x∈Σn
k

⌈
n

per(x)

⌉
= B + 2(kn − A− uk(n)) + uk(n) (1)

≤ 2kn − uk(n) +B

≤ 2kn − kn(1− 1/k − 1/k2) +B

≤ kn(1 + 1/k + 1/k2) + n(kn/2+1 − 1)/(k − 1),

from which the result follows.

4 De Bruijn words

In this section we provide a de Bruijn word construction from [8] that we will utilize below.
First, we need to define some terminology.

A function f : Σn
k → Σk is said to be a feedback function. A feedback function f

is said to be non-singular if the function F : Σn
k → Σn

k defined by F (a1a2 · · · an) =
a2 · · · anf(a1a2 · · · an) is one-to-one.

A universal cycle for a set of words S ⊆ Σn
k is a length-|S| word that, when considered

circularly, contains every word in S as a factor. A non-singular feedback function partitions
Σn
k into sets S1, S2, . . . , Sm, each having a corresponding universal cycle. For each word

w = w1w2 · · ·wn ∈ Si, for some 1 ≤ i ≤ m, we have that w2w3 · · ·wnf(w) ∈ Si and w has a
corresponding word v = v1v2 · · · vn ∈ Si such that w = v2v3 · · · vnf(v). The lexicographically
least word in a set Si is called a cycle representative or the cycle representative for Si. Let
Reps(f) denote the set of all cycle representatives in the partition of Σn

k induced by f .

Example 8. Let f(a1a2 · · · an) = a1 + 1 be a feedback function over a binary alphabet.
Clearly f is nonsingular, since F is one-to-one:

F (a1a2 · · · an) = a2 · · · anf(a1a2 · · · an) = a2 · · · an(a1 + 1).

Consider the feedback function f for n = 6. The following table is the partition S1, S2, . . . , S6

of Σ6
2 induced by f .

S1 S2 S3 S4 S5 S6

000000 000010 000100 000110 001010 001100
000001 000101 001001 001101 010101 001100
000011 001011 010011 011011 101011 011001
000111 010111 100111 110111 010110 110011
001111 101111 001110 101110 101101 100110
011111 011110 011101 011100 011010
111111 111101 111011 111001 110101
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The underlined words represent the cycle representatives of each of the subsets. So Reps(f) =
{000000, 000010, 000100, 000110, 001010, 001100}. The universal cycles corresponding to each
subset can be obtained by concatenating the first symbol (in bold) of each word from top to
bottom.

It is well known that de Bruijn words can be constructed by joining the universal cycles
in a specific way, sometimes with use of a successor rule. A successor rule is a feedback
function that determines the next symbol in a de Bruijn word using the previous n symbols.

4.1 A successor rule

We are now ready to describe a successor rule from [8]. Let f be an arbitrary non-singular
feedback function over Σn

k .

Definition 9. Let β ∈ Σn−1
k . Define τ(β) to be the increasing sequence of symbols x ∈ Σk

such that βx ∈ Reps(f) with one possible addition: (a) if 0 is already in the sequence and
β0 6= 0n, then prepend f(0β) to the front or (b) if 0 is not in this sequence and the sequence
is non-empty, then prepend 0 to the front. In the special case when β = 0n−1 and x = 0 is
the only symbol in Σk such that βx ∈ Reps(f), define τ(β) to be empty.

Note that if β0 6= 0n and v = f(0β) then 0β < βv, and hence βv /∈ Reps(f). Thus, each
symbol in τ(β) is unique. Also note that by this definition τ(β) will never have only one
symbol.

Let α = a1a2 · · · an. Let τ(a2a3 · · · an) = t0, t1, . . . , tp−1 be considered cyclically (i.e.,
ti+1 ≡ t(i+1) mod p). Define g : Σn

k → Σk as follows:

g(α) =

{
tj+1, if f(α) = tj for some j ∈ {0, 1, . . . , p− 1};
f(α), otherwise.

By [8, Theorem 4.3] we have that g is a successor rule.
We now prove a lemma we will need in the next section.

Lemma 10. For all k ≥ 2, there exists a k-ary de Bruijn word of order 3 that contains
either abab or baba for all a 6= b where a, b ∈ Σk.

Proof. Consider the feedback function f : Σ3
k → Σk defined by f(a1a2a3) = a1 + a2 − a3.

We will show that the function F (a1a2a3) = a2a3f(a1a2a3) is one-to-one. Suppose there
exist two words a1a2a3 and b1b2b3 such that F (a1a2a3) = F (b1b2b3). Then we would have
that a2a3(a1 + a2 − a3) = b2b3(b1 + b2 − b3). But this implies that a2 = b2,a3 = b3, and
a1+a2−a3 = b1+b2−b3. These three equations imply a1 = b1. Now we have a1a2a3 = b1b2b3.
Therefore F is one-to-one.

Let τ(a2a3) be the increasing sequence of symbols c ∈ Σk such that a2a3c is a cycle
representative of some set in the partition of Σ3

k by f . If 0 is in τ(a2a3) and a2a3c 6= 000,
then prepend f(0a2a3) to the sequence. If 0 is not in τ(a2a3) and τ(a2a3) is nonempty, then
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prepend 0 to the sequence. Let t0, t1, . . . , tp−1 be the sequence τ(a2a3). Let g : Σ3
k → Σk be

a feedback function defined as follows:

g(a1a2a3) =

{
tj+1, if f(a1a2a3) = tj for some j ∈ Σp;

f(a1a2a3), otherwise.

Clearly g is an instance of the general successor rule in Section 4.1, so it is a successor rule as
well. We now argue that g(aba) = b for all a, b ∈ Σk with a < b. Since f(aba) = a+b−a = b,
it suffices to show that τ(ba) is empty. Suppose that τ(ba) is nonempty. Then there exists
a d ∈ Σk such that bad is a cycle representative of some set S ′ in the partition of Σ3

k by f .
Consider the word adf(bad) ∈ S ′. Since a < b, we have that adf(bad) is lexicographically
smaller than bad. Thus bad cannot be a cycle representative. So τ(a2a3) is empty.

5 Bounds on disjoint occurrences

We are now ready to prove some results about C.

Theorem 11.

(a) C(1, n) = 2n− 1 for n ≥ 1;

(b) C(k, 1) = k for k ≥ 1;

(c) C(k, 2) = k2 + k + 1 for k ≥ 1;

(d) C(k, 3) = k3 + k2 + k + 2 for k ≥ 1.

Proof.

(a) A unary word of length 2n has two disjoint length-n occurrences.

(b) A word of length k + 1, by the pigeonhole principle, has two occurrences of a single
letter.

(c) Take a de Bruijn word of order 2 over a k-letter alphabet; it has length k2 +1. Replace
each occurrence of aa with aaa; such a replacement clearly does not introduce any
disjoint occurrences. The resulting word has length k2 + k + 1. This gives the lower
bound. For the upper bound, we use Theorem 6. All length-2 words have period 2,
except those of the form aa, which have period 1. Then the sum in Theorem 6 gives
the upper bound.

(d) For the upper bound, we note that all length-3 words have period 3, except that aaa
has period 1 and aba, with a 6= b, has period 2. The sum in Theorem 6 then gives
k3 + k2 + k + 2.

From Lemma 10 we know that there is a k-ary de Bruijn word of order 3 that contains
either abab or baba for all a 6= b. Without loss of generality, assume abab occurs; we
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can then insert ab immediately after its occurrence. We can also insert aa after the
unique occurrence of aaa for each letter a. This transformation introduces no disjoint
occurrences, but adds k(k− 1) + 2k letters to the de Bruijn word of length k3 + 2, thus
matching the upper bound.

Computing the exact value of C(k, n), even for k and n seems like a difficult problem.
In Table 1 below we give the first few values of this function, obtained by brute force of the
solution space.

k
n

1 2 3 4 5 6 7

1 1 3 5 7 9 11 13
2 2 7 16 32 59 110 ≥ 192
3 3 13 41
4 4 21 86
5 5 31

Table 1: Values of C(k, n)

Words achieving the bounds in Table 1 are given below:

k n Word achieving C(k, n)
2 2 0001110
2 3 0000010101111100
2 4 01010100100110110111111100000001
2 5 00000000010001000110011001110100101010101101101111111110000
2 6 00000000000100001000011000110001110011100111101000101001010010110010011011011010101010111011101111111111100000

3 2 0001021112220
3 3 00000101011002020210220121212222211111200
4 2 000102031112132223330
4 3 00000101011002020210220030303103201203301302311111212122113131321331232323333322222300

5 2 0001020304111213142223243334440

Table 2: Words achieving the bounds in Table 1

For all of the entries in this table, except (4, 3), the word given is guaranteed to be the
lexicographically least.

The value C(2, 6) = 110 and the associated lexicographically least string, and the bound
C(2, 7) ≥ 192 were computed by Bert Dobbelaere, who kindly allowed us to quote them
here.
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6 Split occurrences of t-overlaps

We now turn to the main results of the paper: finding explicit bounds on the length of the
longest word avoiding split t-overlaps.

Define S(k, t) (resp., R(k, t)) to be the length of the longest word over a k-letter alphabet
containing no occurrences of split t-overlaps (resp., reversed split t-overlaps).

Theorem 12. We have

(a) S(k, t) ≤ C(k, C(k, t) + 1);

(b) S(k, 0) = k;

(c) S(k, 1) ≤ kk+1 + k − 1;

(d) S(1, t) = 3t− 1 for t ≥ 1;

and the same bounds hold for R(k, t).

Proof. We prove the results only for split overlaps; exactly the same arguments can be used
for reversed split overlaps.

(a) Let |w| ≥ C(k, C(k, t) + 1) + 1. Then w contains at least two disjoint occurrences of
some factor x of length C(k, t) + 1. Write w = pxqxr. Then x itself contains two disjoint
occurrences of some factor y of length t. Write x = syuyv. Then w = psyuyvqsyuyvr. Now
w contains the factor yuyvqsyuy and so the split t-overlap yuy ·uy. It therefore follows that
S(k, t) ≤ C(k, C(k, t) + 1), as desired.

(b) For t = 0, we can take C(k, t) = k. For if a word w is of length at least k + 1, it must
contain two repeated letters, say w = xayaz, and hence the split square a · · · a.

(c) For t = 1, we have C(k, t) ≤ kk+1 + k − 1. We can use the argument in (a), but with
a small twist. Consider the factors of length k + 1 in a word w of length at least kk+1 + k.
There are at least kk+1 + 1 of these factors, and by the pigeonhole principle, some factor x
of length k + 1 appears at least twice in w. If these two occurrences of x overlap in w, we
are already done, because they contain an overlap right there by Proposition 1. Otherwise,
write w = sxtxu for some s, t, u. Now x is of length k + 1, so again by the pigeonhole
principle, some letter a is repeated in x. Write x = paqar for some words p, q, r. Putting
this all together, we have w = spaqartpaqaru. Consider the factor aqartpaqa. It has the
split 1-overlap aq · · · aqa.

(d) Easy. Left to the reader.

Table 3 gives the values of S(k, t) we have computed by brute force.
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k
t

0 1 2 3 4

1 1 2 5 8 11
2 2 4 12 47
3 3 9 ≥ 97
4 4 31
5 5 ≥ 100

Table 3: Values of S(k, t)

Words achieving the nontrivial bounds in Table 3 are given below:

k t Lexicographically least word achieving S(k, t)
2 1 0011
2 2 000110100111
2 3 00111010100001010011101000011111000011010001110
3 1 012021012
4 1 0120321301231013210203123021031

Table 4: Lexicographically least word achieving the bounds in Table 3

Table 5 gives the values of R(k, t) we have computed by brute force.

k
t

0 1 2 3 4

1 1 2 5 8 11
2 2 4 15 46 ≥ 213
3 3 9 ≥ 110
4 4 30
5 5 ≥ 122

Table 5: Optimal values of R(k, t)

Words achieving the nontrivial bounds in Table 5 are given below:
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k t Lexicographically least word achieving R(k, t)
2 1 0011
2 2 010001100111001
2 3 0010100110100011111000111010000011101010001100
3 1 012010210
4 1 012031231032021030231321023013

Table 6: Lexicographically least word achieving the bounds in Table 3

7 A lower bound

In this section we obtain a lower bound on S(k, t).

Theorem 13. S(k, k) ≥ k · k! and S(k, t) ≥ (k − t) · t! for all t ≤ k.

Proof. First consider the case when t = k. Let P denote the set of all permutations of Σk,
and let P be the partition of P formed by equivalence classes under rotation. For each
equivalence class [π] ∈ P, let Sπ be the word formed by concatenating the permutations
in [π] so that π2 follows π1 if π2 is the right rotation of π1, and the choice for the first
permutation begins with 0. Now let Tk be the word formed by the concatenation of all
permutations of Σk, such that if π1, π2 are adjacent permutations in Tk, the last symbol of
π1 is the same as the first symbol of π2. For example, for k = 3 we get the word

T3 = 012 201 120 021 102 210.

Suppose that Tk contains a split k-overlap, say Tk contains xyz such that xz = www′

with |w′| = k. Write xz = w′uw′uw′, with w = w′u. If w′ is a permutation of Σk, then xyz
contains at least two copies of w′, regardless of the choice for y, which is a contradiction
since each permutation of Σk appears exactly once in Tk. If w′ is not a permutation of Σk,
one symbol appears twice consecutively in w′. Assume that the symbol which appears twice
consecutively is a and write w′ = w1w2, where the last symbol of w1 and the first symbol
of w2 is a. We then have that xz = w1w2uw1w2uw1w2, so either xyz contains w1w2uw1a,
aw2uw1w2, or x = w1w2uw1 and z = w2uw1w2.

If xyz contains w1w2uw1a or aw2uw1w2, then aw2uw1a is contained in Tk, so w2uw1 must
contain two permutations. There are two copies of w2uw1 in xz, so regardless of the choice of
y, there is a repeated permutation in xyz, which is a contradiction. If instead x = w1w2uw1

and z = w2uw1w2, then w2uw1w2 is in Tk, and so w2uw1 and w2 are in different permutations.
Since |w2uw1| ≥ t, it must be that w2uw1 contains at least one permutation. But Tk contains
two copies of w2uw1, so again a permutation is repeated in Tk. This is not possible, so Tk
cannot contain a split k-overlap, and S(k, k) ≥ |Tk| = k · k!.

When t < k, we can partition the alphabet into
⌊
k
t

⌋
subsets of size at most t, and for

each subset Σi, 1 ≤ i ≤
⌊
k
t

⌋
let Ti be a concatenation of all permutations of Σi such that

adjacent permutations match in their first and last symbols, using the same construction as
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before. Let T be the concatenation of each of these Ti, and by the same argument as in the
t = k case, T cannot contain a split t-overlap. Thus, S(k, t) ≥ t!t ·

⌊
k
t

⌋
≥ (k − t) · t!.

8 Remarks

We currently do not know whether the upper bound in Theorem 6 is tight, or asymptotically
tight, except when n ≤ 3. Improvement of this bound, or construction of examples nearly
matching the bound, would be of interest.

It is a challenging computational problem to compute more values of C(k, n), S(k, t),
and R(k, t), which we leave to the reader.
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O. Carton, editors, Developments in Language Theory, 17th International Conference,
DLT 2013, Vol. 7907 of Lecture Notes in Computer Science, pp. 384–395. Springer-
Verlag, 2013.

[12] P. T. Nielsen. A note on bifix-free sequences. IEEE Trans. Inform. Theory IT-19
(1973), 704–706.

[13] M. Rao. Last cases of Dejean’s conjecture. Theoret. Comput. Sci. 412 (2011), 3010–
3018.
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