
A successor rule framework for constructing k-ary de Bruijn
sequences and universal cycles

D. Gabric J. Sawada A. Williams D. Wong

July 24, 2018

Abstract

We present a simple framework for constructing k-ary de Bruijn sequences, and more generally, uni-
versal cycles, via successor rules. The framework is based on the often used method of joining disjoint
cycles. It generalizes several previously known de Bruijn sequence constructions based on the pure cy-
cling register and is applied to derive a new construction that is perhaps the simplest of all successors.
Furthermore, it generalizes an algorithm to construct binary de Bruijn sequences based on any arbitrary
nonsingular feedback function. The framework is applied to derive and prove the correctness of successors
to efficiently construct (i) universal cycles for k-ary strings of length n whose weight is bounded by some
w and (ii) universal cycles for permutations. It has also been subsequently been applied to find the first
universal cycle constructions for weak orders.

1 Introduction

Let Σk denote the alphabet {1, 2, . . . , k} and let Σn
k denote the set of all k-ary strings of length n. A de

Bruijn sequence is a k-ary string of length kn that when considered cyclicly, contains every string in Σn
k as

a substring. More generally, given a subset S of Σn
k , a universal cycle for S is a k-ary string of length |S|

that when considered cyclicly contains every string in S as a substring. In this paper, we present a framework
for deriving and proving the correctness of de Bruijn sequence constructions, and more generally, universal
cycle constructions, by applying the standard approach of joining disjoint cycles. Each application of the
framework yields a successor rule which is a function that determines the next symbol in a universal cycle
using the previous n symbols.

De Bruijn sequences are well known to be in one-to-one correspondence with Euler cycles in the de Bruijn
graph. A downside to applying standard Euler cycle algorithms to construct de Bruijn sequences, such as the
ones by Hierholzer [11] and Fleury [7], is that they require O(kn) memory to store the graph. This has led to a
significant amount of disjoint literature for producing a wide variety of space-efficient algorithms to construct
de Bruijn sequences. Due to the correspondence with the aforementioned Euler cycles, every construction
method will have a corresponding cycle-joining interpretation in the de Bruijn graph (following Hierholzer’s
approach), even if its correspondence is unknown or hard to determine. The framework presented in this paper
generalizes several previously known k-ary de Bruijn sequence constructions including:

1. A concatenation scheme with an implicitly described successor rule by Fredricksen and Maiorana [8],

2. A successor rule based approach by Etzion [5] that can be used to construct an exponential number of
de Bruijn sequences.

3. A cycle-joining approach by Yang and Dai [25] that can be applied to any nonsingular feedback function
to construct de Bruijn sequences.

1

4. A very simple successor rule by Wong et al. [21, 22].

5. A concatenation scheme with an explicitly described successor rule by Dragon et al. [4],

Compared to the binary case [6, 16, 17], there are relatively few efficient constructions for an alphabet of
arbitrary size. Ralston [18] describes a recursive approach that is based on the aforementioned algorithm by
Fredricksen and Maiorana [8]. There are preference based greedy constructions as detailed by Alhakim [1]
and a look-up table approach by Xie [24]; however, like the Euler cycle approaches, they require exponential
space.

In Section 2 we present our generic successor rule framework for universal cycles and de Bruijn sequences
that is very similar in spirit to the approach by Yang and Dai [25]. Then in Section 3 we apply the framework to
obtain eight universal cycle successors for sets of strings with a weight constraint. When the weight constraints
are removed, the successors construct de Bruijn sequences. In Section 4 we apply the framework to derive
four de Bruijn sequence constructions based on any arbitrary nonsingular feedback function. In Section 5
we outline how the framework can be applied to easily produce a shorthand universal cycle for permutations.
The framework has also been applied to find the first universal cycle constructions for weak orders [23]. We
conclude in Section 6 with some implementation considerations. Our k-ary framework generalizes a simpler
spanning-tree-like framework for the binary case [9].

2 A successor rule framework

For the remainder of this paper assume n, k ≥ 2 and that S is a non-empty subset of Σn
k . All arithmetic is

considered to be modulo k, where 0 ≡ k.

Definition 2.1 A function f : Σn
k → Σk is said to be a feedback function.

Definition 2.2 A feedback function f is a UC-successor of S if there exists a universal cycle U for S such
that each string α ∈ S is followed by f(α) in U .

In this definition the domain of f is defined to be Σn
k , not S, to simplify some of our upcoming proofs. In the

special case where S = Σn
k we say a UC-successor is a de Bruijn-successor.

Definition 2.3 A partition of S into subsets S1,S2, . . . ,Sm is a UC-partition with respect to f if f is a UC-
successor for each Si where i ∈ {1, 2, . . . ,m}.

Definition 2.4 Let S1,S2, . . . ,Sm be an ordered partition of S. For 2 ≤ i ≤ m, let xi, yi, zi ∈ Σk and
let βi ∈ Σn−1

k . A sequence of tuples (β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) is a spanning
sequence of the partition if for each (βi, xi, yi, zi):

(i) yiβi ∈ Si,

(ii) if i = first(βi) then xiβi ∈ Sj for some j < i,

(iii) xiyizi is a substring of the cyclic string created by starting with xfirst(βi) then appending each yj from
tuples (βj , xj , yj , zj) where βj = βi in increasing order of index j,

where first(βi) is the smallest index of a tuple containing βi.

We note the following two remarks with respect to the above definition.

Remark 2.5 If βi is distinct amongst all tuples then xi = zi.

2

Remark 2.6 If βi = βj such that i < j and there is no i < t < j such that βt = βj then yi = xj and zi = yj .

Example 1 Consider S = Σ4
3 and the feedback function f(a1a2a3a4) = a1+1. The following partition of S

into sets S1,S2, . . . ,S8 is a UC-partition with respect to f .

S1 S2 S3 S4 S5 S6 S7 S8

1111 1113 1121 1123 1131 1133 1213 1231
1112 1132 1212 1232 1312 1332 2132 2312
1122 1322 2122 2322 3122 3322 1323 3123
1222 3222 1223 3223 1221 3221 3232
2222 2221 2232 2231 2212 2211 2321
2223 2213 2323 2313 2123 2113 3213
2233 2133 3233 3133 1233 2131
2333 1333 2331 1331 2332 1313
3333 3332 3313 3312 3323 3132
3331 3321 3131 3121 3231 1321
3311 3211 1311 1211 2311 3212
3111 2111 3112 2112 3113 2121

The corresponding universal cycles for each part can be obtained by concatenating together the first symbol from
each string (top to bottom). Specifically the 8 universal cycle are:

α1 = 111122223333 α5 = 113122123323
α2 = 111322213332 α6 = 113322
α3 = 112122323313 α7 = 121323213132
α4 = 112322313312 α8 = 123

The following is a spanning sequence for this partition:

(β5=113, 1, 3, 2)
(β2=111, 3, 2, 3) (β6=113, 3, 2, 1)
(β3=112, 1, 3, 2) (β7=121, 3, 2, 3)
(β4=112, 3, 2, 1) (β8=123, 1, 3, 1)

In this case, observe that each yiβi is last string in Si.

The following lemma describes when two universal cycles can be joined together to create a universal
cycle for a larger set. The result follows from [5, Theorem 1] and more directly from [20, Lemma 3].

Lemma 2.7 (Cycle Joining Lemma) Let S1,S2 be a UC-partition of S with respect to a feedback function
f where xβ ∈ S1 and yβ ∈ S2. Then the following feedback function f ′ is a UC-successor for S:

f ′(α) =


f(xβ) if α = yβ;
f(yβ) if α = xβ;
f(α) otherwise.

Theorem 2.8 Let S1,S2, . . . ,Sm be a UC-partition of S with respect to f with spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) for some m ≥ 2. Then the following feedback
function g is a UC-successor for S:

g(α) =


f(yiβi) if α = xiβi for some i ∈ {2, 3, . . . ,m} and i = first(βi);
f(ziβi) if α = yiβi for some i ∈ {2, 3, . . . ,m};
f(α) otherwise.

3

Proof. The proof is by induction on m. In the base case when m = 2, the spanning sequence is (β2, x2, y2, z2).
By definition, we have x2β2 ∈ S1 and y2β2 ∈ S2, and by Remark 2.5 x2 = z2. The function g(α) is obtained
by applying the Cycle Joining Lemma where β = β2, x = x2 and y = y2. If m > 2, there are two cases
depending on whether or not βm is distinct amongst all tuples in the spanning sequence.

• (βm is distinct) Since βm is distinct, (β2, x2, y2, z2), . . . , (βm−1, xm−1, ym−1, zm−1) is a spanning se-
quence for the UC-partition S1,S2, . . . ,Sm−1 of S \ Sm with respect to f . Let g′ be the UC-successor
for S \ Sm obtained by applying induction. By its definition, g′ is equivalent to f for strings in Sm and
thus g′ is also a UC-successor for Sm. Since βm is distinct, by Remark 2.5 xm = zm. By applying
the Cycle Joining Lemma on S \ Sm and Sm where β = βm, x = xm and y = ym, the resulting
UC-successor for S is equivalent to g.

• (βm is not distinct) Let j be the largest index less than m such that βj = βm. From Remark 2.6 yj = xm
and zj = ym. Also if i is the smallest index such that βi = βj = βm, then xi = zm by point (iii) in the
definition of a spanning sequence. Thus

(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βj , xj , yj , zm), . . . , (βm−1, xm−1, ym−1, zm−1)

is a spanning sequence of the UC-partition S1,S2, . . . ,Sm−1 of S \ Sm with respect to f . Let g′ be
the UC-successor for S \ Sm obtained by applying induction. By its definition, g′ is equivalent to f
for strings in Sm and thus g′ is also a UC-successor for Sm. By applying the Cycle Joining Lemma on
S1 and S2 where β = βm, and x = xm and y = ym, the resulting UC-successor for S is equivalent
to g. Note in particular that g′(yjβj) = f(zmβm) and that g(yjβj) = f(ymβm) = f(zjβj) and
g(ymβm) = g′(yjβj) = f(zmβm).

2

Example 2 Recall the UC-partition of S = Σ4
3 with respect to f(a1a2a3a4) = a1+1 and its corresponding

spanning sequence (from Example 1). The following illustrates the universal cycle construction for S by applying
Theorem 2.8 (or more specifically, the upcoming Theorem 4.3).

The corresponding universal cycle for S is:

111121223233131123223133121323213132121122223333111312212312332311332211322213332.

4

A similar UC-successor can be derived by essentially reversing the direction of each β-cycle (see the figure
in Example 1). A proof of the following theorem will be identical to the previous proof, except for updating
the observations in the final sentence.

Theorem 2.9 Let S1,S2, . . . ,Sm be a UC-partition of S with respect to f with spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) for some m ≥ 2. Then the following feedback
function g′ is a UC-successor for S:

g′(α) =


f(xiβi) if α = yiβi for some i ∈ {2, 3, . . . ,m} and i = first(βi);
f(yiβi) if α = ziβi for some i ∈ {2, 3, . . . ,m};
f(α) otherwise.

2.1 Simplification for special cases

In this section we provide a simplified definition of a spanning sequence for the special case when each βi
is distinct. This leads to a more restricted, but simplified successor rule result. This result can be further
simplified for the binary case when k = 2, as described in [9].

Definition 2.10 Let S1,S2, . . . ,Sm be an ordered partition of S. For 2 ≤ i ≤ m, let xi, yi ∈ Σk and
let βi ∈ Σn−1

k . A sequence of tuples (β2, x2, y2), (β3, x3, y3), . . . , (βm, xm, ym) is a simplified spanning
sequence of the partition if each βi is unique and for each i the string yiβi ∈ Si and the string xiβi ∈ Sj for
some j < i.

The following corollary is a direct consequence of Theorem 2.8 and Remark 2.5.

Corollary 2.11 Let S1,S2, . . . ,Sm be a UC-partition of S with respect to f with simplified spanning
sequence (β2, x2, y2), (β3, x3, y3), . . . , (βm, xm, ym) for some m ≥ 2. Then the following feedback
function h is a UC-successor for S:

h(α) =


f(xiβi) if α = yiβi for some i ∈ {2, 3, . . . ,m};
f(yiβi) if α = xiβi for some i ∈ {2, 3, . . . ,m};
f(α) otherwise.

3 UC-successors based on the PCR

Each of the eight successors presented in this section are based on the Pure Cycling Register (PCR) which
is defined by the feedback function f(a1a2 · · · an) = a1. It is well known that the UC-partition of Σn

k with
respect to the PCR corresponds to equivalence classes of strings under rotation. We call the lexicographically
smallest string in each such class a necklace. Let Nk(n) denote the set of all necklaces in Σn

k . Let Neck(α)
be the set of strings rotationally equivalent to α. Then {Neck(α) | α ∈ Nk(n)} is a UC-partition of Σn

k with
respect to the PCR.

The weight of a string α, denoted by ω(α), is the sum of its symbols. In this section we apply the
framework from the previous section to develop four UC-successors for subsets of Σn

k whose strings have
weight at most w. Then we present four UC-successors for subsets of Σn

k whose strings have weight at least
w. When the weight constraints are removed, the UC-successors correspond to de Bruijn-successors which
are discussed in more detail at the end of this section.

5

3.1 Lower bound on weight

First symbol
Let α = a1a2 · · · an and let n ≤ w ≤ kn. Assume ω(α) ≥ w. Let x be the largest symbol in Σk \ {k}
such that xa2a3 · · · an is in Nk(n) and ω(xa2a3 · · · an) ≥ w, or let x = 0 if no such symbol exists. Let
v be the smallest value in Σk such that ω(va2a3 · · · an) ≥ w. Define two functions from Σn

k to Σk as
follows:

g1(α) =


x+1 if x > 0 and a1 = v;
a1−1 if x > 0 and v < a1 ≤ x+1;
a1 otherwise,

and

g′1(α) =


v if x > 0 and a1 = x+1;
a1+1 if x > 0 and a1 < x+1;
a1 otherwise.

Theorem 3.1 The functions g1 and g′1 are UC-successors for the subset S of Σn
k consisting of strings whose

weight is greater than or equal to some fixed w where n ≤ w ≤ kn.

Proof. If w = kn then S = {kn} and g1(α) = g′1(α) = a1 which are UC-successors for S.
Thus, assume w < kn. Consider the UC-partition S1,S2, . . . ,Sm of S with respect to the PCR. This
is well-defined since each subset contains strings with equal weight. Let the subsets be ordered in re-
verse lexicographic order with respect to their necklace representatives. We construct a spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) for the partition. Since the largest necklace represen-
tative is kn and w < kn, we have S1 = {kn}, m ≥ 2, and for i ∈ {2, 3, . . . ,m} the necklace representative
γi for Si must start with a symbol yi that is less than k. Let βi = b1b2 · · · bn−1 and let γi = yiβi. Since yiβi
is in Si, condition (i) is satisfied in the definition of a spanning sequence. Let xi = yi + 1. Observe that the
necklace representative of Neck(xiβi) is clearly larger than γi and has more weight than γi. This implies
that xiβi in in some Sj where j < i. Thus (ii) is satisfied in the definition of a spanning sequence. Let x
be the largest symbol of Σk \ {k} such that xβi is a necklace and ω(xβi) ≥ w. Let v be smallest value in
Σk such that ω(vβi) ≥ w. If yi > v, then let zi = yi − 1; otherwise yi = v and let zi = x+1. Because
of the ordering imposed on the UC-partition, condition (iii) is satisfied and we have just constructed a valid
spanning sequence for the partition. The UC-successor for S obtained by applying Theorem 2.8 (respectively,
Theorem 2.9) to this UC-partition and spanning sequence is equivalent to g1 (respectively, g′1). 2

Last non-k (lex least)
Let α = a1a2 · · · an and let n ≤ w ≤ kn. Assume ω(α) ≥ w. If α = kn, let j = n; otherwise let
j be the smallest index of a2a3 · · · an such that aj ̸= k. Let x be the smallest symbol in Σk such that
ajaj+1 · · · anxkj−2 is in Nk(n) and ω(xa2a3 · · · an) ≥ w, or let x = 0 if no such symbol exists. Define
two functions from Σn

k to Σk as follows:

g2(α) =


k if x ̸= 0 and a1 = x;
a1−1 if x ̸= 0 and a1 > x;
a1 otherwise,

and

6

g′2(α) =


x if x ̸= 0 and a1 = k;
a1+1 if x ̸= 0 and a1 < k;
a1 otherwise.

Theorem 3.2 The functions g2 and g′2 are UC-successors for the subset S of Σn
k consisting of strings whose

weight is greater than or equal to some fixed w where n ≤ w ≤ kn.

Proof. If w = kn then S = {kn} and g4(α) = g′4(α) = a1 which are UC-successors for S. Thus,
assume w < kn. Consider the UC-partition S1,S2, . . . ,Sm of S with respect to the PCR. This is well-
defined since each subset contains strings with equal weight. Let the subsets be ordered in reverse lex-
icographic order with respect to their necklace representatives. We now construct a spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) for the partition. Since the largest necklace represen-
tative is kn and w < kn, we have S1 = {kn}, m ≥ 2, and for i ∈ {2, 3, . . . ,m} the necklace representative
γi = c1c2 · · · cn for Si must contain a symbol less than k. Let j be the largest index such that cj ̸= k and
let yi = cj . Let βi = cj+1 · · · cnc1 · · · cj−1. Since yiβi is a rotation of γi, it is in Si. Thus condition (i) is
satisfied in the definition of a spanning sequence. Let xi = yi + 1. Observe that the necklace representative
of Neck(xiβi) is clearly greater than γi and has more weight than γi. This implies that xiβi in in some Sj

where j < i. Thus (ii) is satisfied in the definition of a spanning sequence. Let x be the smallest symbol of Σk

such that c1 · · · cj−1xcj+1 · · · cn is a necklace. If yi = x then let zi = k; otherwise, let zi = yi − 1. Because
of the ordering imposed on the UC-partition, condition (iii) is satisfied and we have just constructed a valid
spanning sequence for the partition. The UC-successor for S obtained by applying Theorem 2.8 (respectively,
Theorem 2.9) to this UC-partition and spanning sequence is equivalent to g2 (respectively, g′2). 2

3.2 Upper bound on weight

Last symbol
Let α = a1a2 · · · an and let n ≤ w ≤ kn. Assume ω(α) ≤ w. Let x be the smallest symbol in Σk \ {1}
such that a2a3 · · · anx is in Nk(n) and ω(xa2a3 · · · an) ≤ w, or let x = 0 if no such symbol exists.
Let v be the largest value in Σk such that ω(va2a3 · · · an) ≤ w. Define two functions from Σn

k to Σk as
follows:

g3(α) =


x−1 if x > 0 and a1 = v;
a1+1 if x > 0 and x−1 ≤ a1 < v;
a1 otherwise,

and

g′3(α) =


v if x > 0 and a1 = x−1;
a1−1 if x > 0 and a1 > x−1;
a1 otherwise.

Theorem 3.3 The functions g3 and g′3 are UC-successors for the subset S of Σn
k consisting of strings whose

weight is less than or equal to some fixed w where n ≤ w ≤ kn.

Proof. If w = n then S = {1n} and g3(α) = g′3(α) = a1 which are UC-successors for S.
Thus, assume w > n. Consider the UC-partition S1,S2, . . . ,Sm of S with respect to the PCR. This

7

is well-defined since each subset contains strings with equal weight. Let the subsets be ordered in
lexicographic order with respect to their necklace representatives. We construct a spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) for the partition. Since the smallest necklace repre-
sentative is 1n and w > n, we have S1 = {1n}, m ≥ 2, and for i ∈ {2, 3, . . . ,m} the necklace representative
γi for Si must end with a symbol yi that is greater than 1. Let βi = b1b2 · · · bn−1 and let γi = βiyi. Since
yiβi is a rotation of γi, it is in Si. Thus condition (i) is satisfied in the definition of a spanning sequence.
Let xi = yi − 1. Observe that the necklace representative of Neck(xiβi) is clearly less than γi and has less
weight than γi. This implies that xiβi in in some Sj where j < i. Thus (ii) is satisfied in the definition of a
spanning sequence. Let x be the smallest symbol of Σk such that βix is a necklace and ω(xβi) ≤ w. Note
x > 1. Let v be largest value in Σk such that ω(vβi) ≤ w. If yi < v, then let zi = yi + 1; otherwise
yi = v and let zi = x−1. Because of the ordering imposed on the UC-partition, condition (iii) is satisfied
and we have just constructed a valid spanning sequence for the partition. The UC-successor for S obtained by
applying Theorem 2.8 (respectively, Theorem 2.9) to this UC-partition and spanning sequence is equivalent
to g3 (respectively, g′3). 2

First non-1 (Grandmama)
Let α = a1a2 · · · an and let n ≤ w ≤ kn. Assume ω(α) ≤ w. Let j be the largest index of a2a3 · · · an
such that aj ̸= 1 or j = 1 if no such index exists. Let x be the largest symbol in Σk such that
1n−jxa2 · · · aj is in Nk(n) and ω(xa2a3 · · · an) ≤ w, or let x = 0 if no such symbol exists. Define
two functions from Σn

k to Σk as follows:

g4(α) =


1 if x ̸= 0 and a1 = x;
a1+1 if x ̸= 0 and a1 < x;
a1 otherwise,

and

g′4(α) =


x if x ̸= 0 and a1 = 1;
a1−1 if x ̸= 0 and 1 < a1 ≤ x;
a1 otherwise.

Theorem 3.4 The functions g4 and g′4 are UC-successors for the subset S of Σn
k consisting of strings whose

weight is less than or equal to some fixed w where n ≤ w ≤ kn.

Proof. If w = n then S = {1n} and g4(α) = g′4(α) = a1 which are UC-successors for S.
Thus, assume w > n. Consider the UC-partition S1,S2, . . . ,Sm of S with respect to the PCR. This
is well-defined since each subset contains strings with equal weight. Let the subsets be ordered in
lexicographic order with respect to their necklace representatives. We construct a spanning sequence
(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) for the partition. Since the smallest necklace repre-
sentative is 1n and w > n, we have S1 = {1n}, m ≥ 2, and for i ∈ {2, 3, . . . ,m} the necklace representative
γi = c1c2 · · · cn for Si must contain a symbol greater than 1. Let j be the smallest index such that cj ̸= 1
and let yi = cj . Let βi = cj+1 · · · cnc1 · · · cj−1. Since yiβi is a rotation of γi, it is in Si. Thus condition
(i) is satisfied in the definition of a spanning sequence. Let xi = yi − 1. Note that the necklace representa-
tive of Neck(xiβi) is less than γi and has less weight than γi. This implies that xiβi in in some Sj where
j < i. Thus (ii) is satisfied in the definition of a spanning sequence. Let x be the largest symbol of Σk such
that c1 · · · cj−1xcj+1 · · · cn is a necklace. If yi = x then let zi = 1; otherwise, let zi = yi + 1. Because
of the ordering imposed on the UC-partition, condition (iii) is satisfied and we have just constructed a valid

8

spanning sequence for the partition. The UC-successor for S obtained by applying Theorem 2.8 (respectively,
Theorem 2.9) to this UC-partition and spanning sequence is equivalent to g4 (respectively, g′4). 2

3.3 De Bruijn-successors

When removing the weight constraint from the previous eight successor rules, we obtain de Bruijn-successors
based on the PCR.

Corollary 3.5 The functions g1, g′1, g2, g
′
2, g3, g

′
3, g4, g

′
4 are de Bruijn-successors for Σn

k .

The following table illustrates the de Bruijn sequences for n = 4 and k = 3 constructed from these eight de
Bruijn-successors by starting with 1111.

successor de Bruijn sequence generated by the given successor for n = 4 and k = 3
g1 111122231223312333133332323131323321331133223212311232213121321131113222212122112
g′1 111122223333133323131323233123321331133223122321231123221312132113111322212122112
g2 111121113112211231132113312121312221223123212331313221323133213332222322332323333
g′2 111131132113313221323131332133332222322332323331222122312121312321233112211231112
g3 111122223333233223232221223122112321233123112121313121113221323132113321333133113
g′3 111133313321331132313221321131112331232123112231222333323322323222212211213131212
g4 111121211221222213221132123213321113121313112312232223132323113312332233133323333
g′4 111131312131133133332333123322331123132323122322231112121132133212321122132212222

Three of the successor rules correspond to previously known de Bruijn-successors. In particular:

• The de Bruijn-successor g2 constructs the lexicographically smallest k-ary de Bruijn sequence. A
concatenation scheme for this sequence is given in [8]. The proof of their construction implicitly
describes g2, although it is not explicitly stated. The sequence can also be constructed using a prefer-
smallest greedy approach.

• The de Bruijn-successor g3 corresponds to the successor presented in [22].

• The de Bruijn-successor g4 constructs the grandmama k-ary de Bruijn sequence. A concatenation
scheme for this sequence is given in [3] which also includes a successor rule that is equivalent to g4.

By removing the weight constraints, the statements of the de Bruijn-successors can be simplified. In particular,
we re-state the new de Bruijn-successor g1, which is also the simplest of all the successors.

First symbol (no weight constraint)
Let α = a1a2 · · · an. Let x be the largest symbol in Σk \ {k} such that xa2a3 · · · an is in Nk(n), or let
x = 0 if no such symbol exists. Then g1 can be restated as:

g1(α) =


x+1 if x > 0 and a1 = 1;
a1−1 if x > 0 and 1 < a1 ≤ x+1;
a1 otherwise.

9

4 De Bruijn-successors for an arbitrary feedback function

In this section we generalize two results from the previous section based on the PCR to an entire class of
feedback functions.

Definition 4.1 A feedback function f is said to be nonsingular if the function F : Σn
k → Σn

k defined as
F (a1a2 · · · an) = a2a3 · · · anf(a1a2 · · · an) is one-to-one.

Necessary and sufficient conditions for when k-ary feedback functions are nonsingular are given by Lai [15].
In the binary case, a feedback function is nonsingular if and only if it is of the form f(a1a2 · · · an) = a1 +
f0(a2a3 · · · an) where f0 is any function that maps length n−1 binary strings to {0, 1} [10].

First, we generalize the Last symbol approach which in turn generalizes the binary de Bruijn sequence
constructions give by Jansen, Franx, and Boekee [13]. Then we generalize the First non-1 approach. In
each case let the representative of each part (cycle) induced by the nonsingular feedback function f be its
lexicographically smallest string and let Reps(f) denote the set containing each of these representatives.

4.1 Last symbol

In this section we apply our successor rule framework by focussing on the last symbol of each string in
Reps(f).

Definition 4.2 Let β ∈ Σn−1
k . Define τ(β) to be the increasing sequence of symbols x ∈ Σk such that

βx ∈ Reps(f) with one possible addition: (a) if 1 is already in the sequence and β1 ̸= 1n, then prepend
f(1β) to the front or (b) if 1 is not in this sequence and the sequence is non-empty, then prepend 1 to the front.
In the special case when β = 1n−1 and x = 1 is the only symbol in Σk such that βx ∈ Reps(f), define τ(β)
to be empty.

Note that if β1 ̸= 1n and v = f(1β) then 1β < βv, and hence βv /∈ Reps(f). Thus, each symbol in τ(β) is
unique. Also note that by this definition τ(β) will never have only one symbol.

Example 3 Consider the UC-partition S1,S2, . . . ,S8 of Σ4
3 with respect to f(a1a2a3a4) = a1+1 ordered

lexicographically based on the lexicographically smallest string as representative:

S1 S2 S3 S4 S5 S6 S7 S8

1111 1113 1121 1123 1131 1133 1213 1231
1112 1132 1212 1232 1312 1332 2132 2312
1122 1322 2122 2322 3122 3322 1323 3123
1222 3222 1223 3223 1221 3221 3232
2222 2221 2232 2231 2212 2211 2321
2223 2213 2323 2313 2123 2113 3213
2233 2133 3233 3133 1233 2131
2333 1333 2331 1331 2332 1313
3333 3332 3313 3312 3323 3132
3331 3321 3131 3121 3231 1321
3311 3211 1311 1211 2311 3212
3111 2111 3112 2112 3113 2121

Since Reps(f) = {1111, 1113, 1121, 1123, 1131, 1133, 1213, 1231}, based on the definition of τ(β) we have

τ(111) = ⟨1, 3⟩, τ(112) = ⟨2, 1, 3⟩, τ(113) = ⟨2, 1, 3⟩, τ(121) = ⟨1, 3⟩, τ(123) = ⟨2, 1⟩,

and for all other β, τ(β) is empty.

10

The set of sequences τ effectively describe how universal cycles for the UC-partition of Σn
k with respect

to f can be joined together using our successor rule framework.

Generalized last symbol
Let α = a1a2 · · · an. Let τ(a2a3 · · · an) = t1, t2, . . . , tp be considered cyclicly. Define g5 : Σn

k → Σk

as follows:

g5(α) =

{
tj+1 if f(α) = tj for some j ∈ {1, 2, . . . , p};
f(α) otherwise.

Define g′5 : Σ
n
k → Σk as follows:

g′5(α) =

{
tj−1 if f(α) = tj for some j ∈ {1, 2, . . . , p};
f(α) otherwise.

Theorem 4.3 The functions g5(α) and g′5(α) are de Bruijn-successors for Σn
k .

Proof. Consider the UC-partition S1,S2, . . . ,Sm of Σn
k with respect to a nonsingular feedback function f .

Let the subsets be ordered in lexicographic order with respect to their cycle representatives. We construct
a spanning sequence (β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) for the partition. Since 1n is the
smallest string in Σn

k , it must be the cycle representative of S1, and for i ∈ {2, 3, . . . ,m} the cycle rep-
resentative γi = c1c2 · · · cn for Si must contain an symbol greater than 1. Let βi = c1c2 · · · cn−1. Let
τ(βi) = t1, t2, . . . , tp and let tj = cn. As noted earlier, p ̸= 1. Define the cyclic string σ = s1s2 · · · sp
where sj is the symbol of Σk such that f(sjβ) = tj . This symbol is well-defined since f is nonsingular.
Then let (xi, yi, zi) = (sj−1, sj , sj+1). Since f(yiβi) = cn, yiβi ∈ Si and thus condition (i) is satisfied in
the definition of a spanning sequence. Since γi ̸= 1n, by the definition for each of the three cases for τ ′(βi),
the representative of the subset containing xiβi will be less than γi. Thus (ii) is satisfied in the definition of a
spanning sequence. Finally, because of the ordering imposed on the UC-partition and the definition of σ(βi),
condition (iii) is satisfied. By applying Theorem 2.8 and Theorem 2.9 to this UC-partition and spanning
sequence and simplifying the resulting functions we obtain the de Bruijn-successors g5 and g′5. 2

When this theorem is applied to Σ4
3 with feedback function f(a1a2a3a4) = a1+1, the resulting function

g5(α) produces the de Bruijn sequence outlined in Example 2.

4.2 First non-1

In this section we apply our successor rule framework to generalize the binary de Bruijn-successors given in
Section 3 based on focussing on the first non-1 of each string in Reps(f). Let α = a1a2 · · · an. Let F (α) =
a2 · · · anf(α) and define F j(α) recursively to be F j−1(F (α)) where F 1(α) = F (α) and F 0(α) = α.

Definition 4.4 Let β = b1b2 · · · bn−1 and let j be the largest integer such that 1j is a suffix of β. Define τ ′(β)
to be the increasing sequence of symbols x ∈ Σk \ {1} such that Fn−j−1(βx) ∈ Reps(f) with 1 prepended
to the front if the sequence is non-empty.

Based on this definition observe that τ ′(β) will never have only one symbol.

11

Example 4 Recall the cycle representatives Reps(f) = {1111, 1113, 1121, 1123, 1131, 1133, 1213, 1231}
for the UC-partition of Σ4

3 with respect to the nonsingular feedback function f(a1a2a3a4) = a1+1 presented in
Example 3. Based on the definition of τ(β) we have

τ ′(111) = ⟨1, 3⟩, τ ′(211) = ⟨1, 2, 3⟩, τ ′(231) = ⟨1, 2⟩, τ ′(311) = ⟨1, 2, 3⟩, τ ′(321) = ⟨1, 2⟩,

and for all other β, τ ′(β) is empty. As further example, for β = 231 note that j = 1 is the largest integer such that
1j is a suffix of β and F 2(β2) = 1231 which is in Reps(f).

The set of sequences τ ′ effectively describe how universal cycles for the UC-partition of Σn
k with respect

to f can be joined together using our successor rule framework.

Generalized first non-1
Let α = a1a2 · · · an. Let τ ′(a2a3 · · · an) = t1, t2, . . . , tp be considered cyclicly. Define g6 : Σn

k → Σk

as follows:

g6(α) =

{
tj+1 if f(α) = tj for some j ∈ {1, 2, . . . , p};
f(α) otherwise.

Define g′6 : Σ
n
k → Σk as follows:

g′6(α) =

{
tj−1 if f(α) = tj for some j ∈ {1, 2, . . . , p};
f(α) otherwise.

Theorem 4.5 The functions g6(α) and g′6(α) are de Bruijn-successors for Σn
k .

Proof. Consider the UC-partition S1,S2, . . . ,Sm of Σn
k with respect to a nonsingular feedback function f .

Let the subsets be ordered in lexicographic order with respect to their cycle representatives. We construct
a spanning sequence (β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) for the partition. Since 1n is the
smallest string in Σn

k , it must be the cycle representative of S1, and for i ∈ {2, 3, . . . ,m} the cycle repre-
sentative γi for Si must contain a symbol greater than 1. Let j be the largest integer (it must be less than
n) such that 1j is a prefix of γi. Let γ′i = c1c2 · · · cn be the unique string such that Fn−j−1(γ′i) = γi. Let
βi = c1c2 · · · cn−1. Let τ ′(βi) = t1, t2, . . . , tp and let tj = cn. As noted earlier, p ̸= 1. Define the cyclic
string σ = s1s2 · · · sp where sj is the symbol of Σk such that f(sjβ) = tj . This symbol is well-defined since
f is nonsingular. Then let (xi, yi, zi) = (sj−1, sj , sj+1). Since f(yiβi) = cn, yiβi ∈ Si and thus condition
(i) is satisfied in the definition of a spanning sequence. Since γi ̸= 1n, by the definition for each of the three
cases for τ ′(βi), the representative of the subset containing xiβi will be less than γi. Thus (ii) is satisfied in
the definition of a spanning sequence. Finally, because of the ordering imposed on the UC-partition and the
definition of σ(βi), condition (iii) is satisfied. By applying Theorem 2.8 and Theorem 2.9 to this UC-partition
and spanning sequence and simplifying the resulting functions we obtain the de Bruijn-successors g6 and g′6.

2

5 Shorthand universal cycles for permutations

It is easy to demonstrate that universal cycles for permutations in their standard notation do not exist [14].
However, there are several known universal cycle constructions for permutations using a shorthand nota-
tion [19, 12]. Let π = p1p2 · · · pn be a permutation of order n. A shorthand permutation for π is given by

12

p1p2 · · · pn−1, where the missing symbol pn is easily determined. Let SP(n) denote the set of all shorthand
permutations of order n. For example,

SP(4) = 123, 124, 132, 134, 142, 143, 213, 214, 231, 234, 241, 243

312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432.

An example of a universal cycle for SP(4) using our upcoming construction is: 123124132143243142134234.
It differs from the previous constructions of [19, 12] in which n appears periodically at every n-th position.

An inversion of a permutation π is an ordered pair (pi, pj) such that i < j and pi > pj .

Definition 5.1 Let π = p1p2 · · · pn be a permutation of order n. Consider the rotation π′ = q1q2 · · · qn of π
that starts with the symbol 1. Let j be the smallest index in π′ such that there exists an inversion (qi, qj) for
some i < j. Define inv(π)= qj .

As an example, if π = 634215, then π′ = q1q2 · · · q6 = 156342 and inv(π) = q4 = 3. We apply our
successor rule framework to SP(n) using this definition.

Shorthand permutation successor
Let π = p1p2 · · · pn−1 be a shorthand permutation of order n and let z be the missing symbol. Define
g7 : SP(n) → {1, 2, 3, . . . , n} as follows:

g7(π) =


z if (z = n and p1 = inv(π)) or (p1 = n and z = inv(zp2p3 · · · pn−1));
z if z = p1 − 1 or z = p1 + 1;
p1 otherwise.

Theorem 5.2 The function g7 is a UC-successor for SP(n).

Proof. Since SP(n) is closed under rotation, consider its UC-partition S1,S2, . . . ,Sm with respect to the
PCR. Let the representatives of each part be the lexicographically smallest string. Order the subsets based
on these representatives in increasing order by the number of inversions, then by lexicographic order. Thus,
the representative of S1 is 12 · · · (n−1). Every other representative must either contain n or have at least one
inversion. We construct a simplified spanning sequence (β2, x2, y2), (β3, x3, y3), . . . , (βm, xm, ym) for the
partition. For i ∈ {2, 3, . . . ,m} consider the representative πi = p1p2 · · · pn−1 for Si with missing symbol z.
Consider two cases depending on whether or not the missing symbol is n.

• Suppose z = n. Then πi is a permutation of order n−1. Let yi = inv(πi). Define βi such that yiβi is
a rotation of πi. Clearly yiβi ∈ Si. Let xi = z. Observe that the representative of xiβi will be πi with
the symbol yi replaced with n. Thus, its representative has fewer inversions than πi which implies that
xiβi belongs to some Sj where j < i.

• Suppose z ̸= n. Let yi = (z+1). Define βi such that yiβi is a rotation of πi. Clearly yiβi ∈ Si. Let
xi = z. Note that the representative of xiβi will be πi with the symbol (z+1) replaced with z. Thus, its
representative has the same number of inversions as πi, but is smaller lexicographically. This implies
that xiβi belongs to some Sj where j < i.

Consider some βi and its missing symbol z based on the two cases above. If z = n, then βi contains neither
n nor yi ̸= n−1 based on the definition of inv(πi). Otherwise, βi contains neither z nor yi = z+1. Thus, if
βi = βj for some 2 ≤ i < j ≤ m, then they must have the same missing symbol which implies that yi = yj .

13

However this implies yiβi = yjβj which contradicts i ̸= j. Thus each βi is unique, and we have satisfied the
conditions in the definition of a simplified spanning sequence.

A UC-successor for SP(n) is obtained from this simplified spanning sequence by applying Corollary 2.11.
When simplified, it corresponds to g7. The first line of g7 corresponds to the case outlined above when z = n,
and the second line corresponds to the case when z ̸= n. 2

6 Implementation considerations

Testing whether or not a string α = a1a2 · · · an is a necklace can be tested in O(n) time using O(n) space [2].
By naı̈vely applying such an algorithm, the values x and v from the eight UC-successors presented in Section 3
can be computed in O(kn) time. It is not difficult to improve the running time of each successor to O(n) time
by performing preliminary scans of the relevant string to restrict the possible values for x or v to two choices.
We omit the details.

Theorem 6.1 The UC-successors g1, g′1, g2, g
′
2, g3, g

′
3, g4, and g′4 can be computed in O(n) time using O(n)

space.

Using a similar approach, we can test whether a string α is the lexicographically smallest in an equivalence
class S induced by a nonsingular feedback function. If the feedback function can be computed in O(1)
time, then by computing a universal cycle for S this test can be done in O(|S|) time using O(|S|) space.
Alternatively, if |S| is large, then this test can be performed in O(n|S|) time using O(n) space by applying f
to compute successive strings in the equivalence class and comparing them to α.

Theorem 6.2 Let f be a nonsingular feedback function. If the largest set in the UC-partition of Σn
k with

respect to f has size C, then the de Bruijn-successors g5, g′5, g6, and g′6 can construct de Bruijn sequences in
O(knC) time using O(n) space. Alternatively, if f can be computed in O(1) time, then the successors can be
computed in O(kC) time using O(C) space.

The shorthand permutation successor g7 requires that the O(n) time function inv be computed only if the
permutation starts with n or its missing symbol is n. Otherwise the function can be computed in O(1) time.
By using a circular array to store the current shorthand permutation, and amortizing the work required by the
function inv , we obtain the following result.

Theorem 6.3 The function g7 can be used to compute a shorthand universal cycle for SP(n) in O(1)-
amortized time per symbol using O(n) space.

References

[1] A. Alhakim. Spans of preference functions for de Bruijn sequences. Discrete Applied Mathematics,
160(7-8):992 – 998, 2012.

[2] K. S. Booth. Lexicographically least circular substrings. Inform. Process. Lett., 10(4/5):240–242, 1980.

[3] P. B. Dragon, O. I. Hernandez, J. Sawada, A. Williams, and D. Wong. Constructing de Bruijn sequences
with co-lexicographic order: The k-ary Grandmama sequence. European Journal of Combinatorics,
72:1–11, 2018.

14

[4] P. B. Dragon, O. I. Hernandez, and A. Williams. The grandmama de Bruijn sequence for binary strings.
In Proceedings of LATIN 2016: Theoretical Informatics: 12th Latin American Symposium, Ensenada,
Mexico, pages 347–361. Springer Berlin Heidelberg, 2016.

[5] T. Etzion. An algorithm for constructing m-ary de Bruijn sequences. Journal of Algorithms, 7(3):331 –
340, 1986.

[6] T. Etzion and A. Lempel. Algorithms for the generation of full-length shift- register sequences. IEEE
Transactions on Information Theory, 30(3):480–484, May 1984.

[7] M. Fleury. Deux problèmes de géométrie de situation. Journal de Mathématiques Élémentaires, pages
257–261, 1883.

[8] H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete
Mathematics, 23(3):207–210, 1978.

[9] D. Gabric, J. Sawada, A. Williams, and D. Wong. A framework for constructing de Bruijn sequences
via simple successor rules. Discrete Mathematics, to appear, 2018.

[10] S. W. Golomb and L. R. Welch. Nonlinear shift-register sequences. Jet Prop. Lab., Pasadena, CA,
Memo, pages 20–149, 1957.

[11] C. Hierholzer. Ueber die möglichkeit, einen linienzug ohne wiederholung und ohne unterbrechung zu
umfahren. Mathematische Annalen, 6(1):20–32, 1873.

[12] A. E. Holroyd, F. Ruskey, and A. Williams. Shorthand universal cycles for permutations. Algorithmica,
64(2):215–245, 2012.

[13] C. J. A. Jansen, W. G. Franx, and D. E. Boekee. An efficient algorithm for the generation of DeBruijn
cycles. IEEE Transactions on Information Theory, 37(5):1475–1478, Sep 1991.

[14] J. R. Johnson. Universal cycles for permutations. Discrete Mathematics, 309(17):5264–5270, 2009.

[15] X. Lai. Condition for the nonsingularity of a feedback shift-register over a general finite field. IEEE
Transactions on Information Theory, 33(5):747–749, Sep 1987.

[16] C. Li, X. Zeng, C. Li, and T. Helleseth. A class of de Bruijn sequences. IEEE Trans. Inform. Theory,
60(12):7955–7969, 2014.

[17] C. Li, X. Zeng, C. Li, T. Helleseth, and M. Li. Construction of de Bruijn sequences from LFSRs with
reducible characteristic polynomials. IEEE Trans. Inform. Theory, 62(1):610–624, 2016.

[18] A. Ralston. A new memoryless algorithm for de Bruijn sequences. J. Algorithms, 2(1):50–62, 1981.

[19] F. Ruskey and A. Williams. An explicit universal cycle for the (n−1)-permutations of an n-set. ACM
Transactions on Algorithms (TALG), 6(3):45, 2010.

[20] J. Sawada, A. Williams, and D. Wong. Universal cycles for weight-range binary strings. In Combinato-
rial Algorithms - 24th International Workshop, IWOCA 2013, Rouen, France, July 10-12, 2013, Revised
Selected Papers, volume 8288 of Lecture Notes in Computer Science, pages 388–401. Springer, 2013.

[21] J. Sawada, A. Williams, and D. Wong. A surprisingly simple de Bruijn sequence construction. Discrete
Math., 339:127–131, 2016.

15

[22] J. Sawada, A. Williams, and D. Wong. A simple shift rule for k-ary de Bruijn sequences. Discrete
Mathematics, 340(3):524 – 531, 2017.

[23] J. Sawada and D. Wong. Universal cycle constructions for weak orders. manuscript, 2018.

[24] S. Xie. Notes on de Bruijn sequences. Discrete Applied Mathematics, 16(2):157 – 177, 1987.

[25] J.-H. Yang and Z.-D. Dai. Construction of m-ary de Bruijn sequences (extended abstract). In J. Seberry
and Y. Zheng, editors, Advances in Cryptology — AUSCRYPT ’92, pages 357–363, Berlin, Heidelberg,
1993. Springer Berlin Heidelberg.

16

Appendix - C code for constructing de Bruijn sequences applying g5, g′5, g6, or g′6

#include<stdio.h>
#define MAX_N 50

int n,k,a[MAX_N];

// ===
int Mod(int x) {

while (x < 1) x+=k;
while (x > k) x-=k;
return x;

}
// ===
int f(int a[]) {

return (Mod(a[1] + 1)); // INSERT ANY NONSINGULAR FEEDBACK FUNCTION
}
// ===
int Ones(int a[]) {

for (int i=1; i<=n; i++) if (a[i] != 1) return 0;
return 1;

}
// ===
// Return TRUE iff b[1..n] is a cycle rep = lex smallest string in cycle
// ===
int IsRep(int b[]) {

int i, new_bit, cycle[MAX_N];

for (i=1; i<=n; i++) cycle[i] = b[i];

while (1) {
// Shift and add new bit until returning to b[]
new_bit = f(cycle);
for (i=1; i<=n; i++) cycle[i] = cycle[i+1];
cycle[n] = new_bit;

// Compare b[] to another in the cycle
for (i=1; i<=n; i++) {

if (b[i] < cycle[i]) break;
if (b[i] > cycle[i]) return 0;

}
if (i > n) return 1; // Back to initial string b[]

}
}
// ===
// Compute tau[] and return its size
// ===
int TauLastSymbol(int a[], int tau[]) {

int i,p=0,b[MAX_N];

// Shift and try all values for b[n]
for (i=1; i<=n; i++) b[i] = a[i+1];

for (i=1; i<=k; i++) {
b[n] = i;
if (IsRep(b)) {

if (i == 1 && !Ones(b)) {
a[1] = 1;
tau[++p] = f(a); // a[1] is never used again, so no need to restore

}
else if (i > 1 && p == 0) tau[++p] = 1;
tau[++p] = i;

}
}
return p;

}

17

// ===
int LastSymbol(int a[]) {

int tau[MAX_N],i,j,v;

v = f(a);
j = TauLastSymbol(a,tau);

for (i=1; i<=j; i++) {
if (v == tau[i] && i < j) return tau[i+1];
if (v == tau[i] && i == j) return tau[1];

}
return v;

}
// ===
int LastSymbol2(int a[]) {

int tau[MAX_N],i,j,v;

v = f(a);
j = TauLastSymbol(a,tau);

for (i=1; i<=j; i++) {
if (v == tau[i] && i == 1) return tau[j];
if (v == tau[i] && i > 1) return tau[i-1];

}
return v;

}
// ===
// Compute tau’[] and return its size
// ===
int TauFirstNonOne(int a[], int tau[]) {

int i,v,t,j=0,p=0,b[MAX_N];

for (i=1; i<=n; i++) b[i] = a[i];

// Shift the j 1s in the suffix to front of string
while (j < n && b[n-j] == 1) j++;
for (i=1; i<=n-j; i++) {

v = f(b);
for (t=1; t<n; t++) b[t] = b[t+1];
b[n] = v;

}
if (j == n) return 0;

// Try all values > 1 at position j+1 to see if it is a representative
p=0;
for (i=2; i<=k; i++) {

b[j+1] = i;
if (IsRep(b)) {

if (p == 0) tau[++p] = 1;
tau[++p] = i;

}
}
return p;

}
// ===
int FirstNonOne(int a[]) {

int tau[MAX_N],i,j,v;

v = f(a);
j = TauFirstNonOne(a,tau);

for (i=1; i<=j; i++) {
if (v == tau[i] && i < j) return tau[i+1];
if (v == tau[i] && i == j) return tau[1];

}
return v;

}
// ===

18

int FirstNonOne2(int a[]) {
int tau[MAX_N],i,j,v;

v = f(a);
j = TauFirstNonOne(a,tau);

for (i=1; i<=j; i++) {
if (v == tau[i] && i == 1) return tau[j];
if (v == tau[i] && i > 1) return tau[i-1];

}
return v;

}
// ===
// Generate de Bruijn sequences by iteratively applying a successor rule h() or h2()
// ===
void DB(int type) {

int i, new_bit;

// Initialize first n bits to 1ˆn - could start with any string changing the termination
for (i=0; i<=n; i++) a[i] = 1;
do {

printf("%d", a[1]);
if (type == 1) new_bit = LastSymbol(a);
if (type == 2) new_bit = LastSymbol2(a);
if (type == 3) new_bit = FirstNonOne(a);
if (type == 4) new_bit = FirstNonOne2(a);

// Shift and add new bit
for (i=1; i<=n; i++) a[i] = a[i+1];
a[n] = new_bit;

} while (!Ones(a));
}
// ===
int main() {

printf("Enter n: "); scanf("%d", &n);
printf("Enter k: "); scanf("%d", &k);
printf("Last symbol (incr):\n"); DB(1); printf("\n\n");
printf("Last symbol (decr):\n"); DB(2); printf("\n\n");
printf("First non-1 (incr):\n"); DB(3); printf("\n\n");
printf("First non-1 (decr):\n"); DB(4); printf("\n\n");

}

19

