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Abstract

A word w has a border u if u is a non-empty proper prefix and suffix of u. A word w
is said to be closed if w is of length at most 1 or if w has a border that occurs exactly
twice in w. A word w is said to be privileged if w is of length at most 1 or if w has a
privileged border that occurs exactly twice in w. Let Ck(n) (resp. Px(n)) be the number
of length-n closed (resp. privileged) words over a k-letter alphabet. In this paper, we
improve existing upper and lower bounds on Cx(n) and Px(n). We completely resolve
the asymptotic behaviour of Ci(n). We also nearly completely resolve the asymptotic
behaviour of Pg(n) by giving a family of upper and lower bounds that are separated
by a factor that grows arbitrarily slowly.

1 Introduction

Let ¥y denote the k-letter alphabet {0,1,...,k —1}. Throughout this paper, we denote the
length of a word w as |w|. A word w is said to be a factor of a word w if w = xuy for
some words x, y. A word w has a border u if u is a non-empty proper prefix and suffix of
w. A word that has a border is said to be bordered; otherwise, it is said to be unbordered. A
word w is said to be closed if |w| < 1 or if w has a border that occurs exactly twice in w. If
u is a border w and u occurs in w exactly twice, then we say w is closed by u. It is easy to
see that if a word w is closed by a word u, then u must be the largest border in w; otherwise
u would occur more than two times in w. A word w is said to be privileged if |w| < 1 or if
w is closed by a privileged word.

Example 1. The English word entanglement has the border ent and only contains two
occurrences of ent. Thus, entanglement is a closed word, closed by ent. Since |ent| > 1 and
ent is unbordered and therefore not privileged, we have that entanglement is not privileged.
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The English word alfalfa is closed by alfa. Furthermore, alfa is closed by a. But
la| <1, so alfa is privileged and therefore so is alfalfa.

The only border of the English word eerie is e and e appears 3 times in the word. Thus,
eerie is neither closed nor privileged.

Closed words were introduced relatively recently by Fici [5] as a way to classify Trape-
zoidal and Sturmian words. However, there are multiple equivalent formulations of closed
words that have been defined at different times. Closed words are equivalent to codewords in
prefix-synchronized codes [8, 9]. Closed words are also equivalent to periodic-like words [3].
A period of a word w = wywy---w, is an integer p < n such that w; = w4, for all
1 <i<n—p. Alength-n word is said to be periodic if it has a period of length < n/2. In
applications that require the analysis of long words, like DNA sequence analysis, the smallest
period is typically much larger than half the length of the word. Periodic-like words were
introduced as a generalization of periodic words that preserve some desirable properties of
periodic words.

Privileged words [13] were introduced as a technical tool related to a problem in dynamical
systems and discrete geometry. They were originally defined as a generalization of rich words
by tweaking the definition of a complete first return. A complete first return to a word u is a
word that starts and ends with u, and contains only two occurrences of u. A palindrome is a
word that reads the same forwards and backwards. A word w is said to be rich if and only if
every palindromic factor of w is a complete first return to a shorter palindrome. Interestingly,
rich words contain the maximum possible number of distinct palindromic factors. Privileged
words were then defined as an iterated complete first return. A word is privileged if and
only if it is a complete first return to a shorter privileged word. Single letters and the empty
word are defined to be privileged in order to make this definition meaningful.

Since their introduction, there has been much research into the properties of closed and
privileged words [1, 2, 4, 6, 12, 16, 17, 20]. One problem that has received some interest
lately [7, 14, 18, 19] is to find good upper and lower bounds for the number of closed and
privileged words.

Let Cy(n) denote the number of length-n closed words over ¥;. Let Ck(n,t) denote the
number of length-n closed words over X that are closed by a length-t word. Let Py(n)
denote the number of length-n privileged words over ¥;. Let Py(n,t) denote the number of
length-n privileged words over ¥, that are closed by a length-t privileged word. See Tables 1
and 2 for sample values of Cy(n,t) and Py(n,t) for small n, t. See sequences A226452 and
A231208 in the On-Line Encyclopedia of Integer Sequences [15] for sample values of Cy(n)
and Py(n).

Every privileged word is a closed word, so any upper bound on C(n) is also an upper
bound on Py(n). Furthermore, any lower bound on Py (n) is also a lower bound on Cy(n).

e Forsyth et al. [7] showed that Py(n) > 2"~ /n? for all n > ng for some ng > 0.

e Nicholson and Rampersad [14] improved and generalized this bound by showing that

there are constants ¢ and ng such that Py(n) > cn(—n(n))2 for all n > ny.
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e Rukavicka [18] showed that there is a constant ¢ such that Ci(n) < clnn’- f for all
n > 1.

e Rukavicka [19] also showed that for every j > 3, there exist constants o, and n; such
that Py(n) < a;fvn \/@ %I (n) H n°(n) length-n privileged words for all n > n;

where In°’(n) = n and In”(n) = ln(ln"] '(n)).

The best upper and lower bounds for both Ci(n) and Py(n) are widely separated, and can
be much improved. In this paper, we improve the existing upper and lower bounds on Cy(n)
and Py(n). Let logi’(n) = n and log{/(n) = log,(logy’ " (n)) for j > 1. We prove the
following two theorems.

Theorem 2. Let k > 2 be an integer.
(a) There exist constants N and ¢ such that Cy(n) > ¢ for alln > N.
(b) There exist constants N' and ¢ such that Cy(n) < £ for alln > N'.
Theorem 3. Let k > 2 be an integer.
(a) For all j > 0 there exist constants N; and c; such that
: K"
"nlogy! (n) TT1_, logi' (n)

Py(n) > ¢

for alln > Nj.
(b) For all j > 0 there exist constants N} and c; such that
kn
"n T, logy (n)

Pi(n )<

for alln > N;.

Before we proceed, we give a heuristic argument as to why Cx(n) is in @(%) Consider
a “random” length-n word w Let ¢ = log,(n) + ¢ where ¢ is a constant such that ¢ is a
positive integer. There is a k,g = kc chance that w has a length-¢ border. Suppose w has a
length-¢ border. Now suppose we drop the first and last character of w to get w’. If w’ were
randomly chosen (which it is not), then we could use the linearity of expectation to get that
the expected number of occurrences of u in w’ is approximately (n — 1 — £)k—* ~ k=¢. Thus,
for ¢ large enough we have that u does not occur in w’ with high probability, and so w is
closed. Therefore, there are approximately k"¢ € @(%) length-n closed words.




n 1 2 3 4 ) 6 7 8 9 10
10 |2 30 70 20 30 12 6 2 2 0
11 |2 42 118 96 o4 30 13 6 2 2
12 12 60 200 182 114 o4 30 12 6 2
13 |2 88 338 346 214 126 54 30 12 6
14 2 132 570 640 432 232 126 54 30 12
15 |2 202 962 1192 828 474 240 126 54 30
16 |2 314 1626 2220 1612 908 492 240 126 54
17 12 494 2754 4128 3112 1822 956 504 240 126
18 |2 784 4676 7670 6024 3596 1934 982 504 240
19 |2 1252 7960 14264 11636 7084 3828 1992 990 504
20 |2 2008 13588 26524 22512 13928 7632 3946 2026 990

Table 1: Some values of Cs(n,t) for n, t where 10 <n <20 and 1 <t < 10.

1 2 3 4 5 6 7 8 9 10
10 |2 16 22 8 6 2 2 0 2 0
11 |12 26 38 16 10 6 4 2 2 2
12 |12 42 68 30 18 4 6 2 2 0
13 12 68 122 58 38 14 10 6 4 2
14 |2 110 218 108 76 20 14 8 6 2
15 12 178 390 204 148 46 24 18 14 6
16 |2 288 698 384 288 86 48 16 18 8
17 12 466 1250 724 556 178 92 36 32 26
18 |2 754 2240 1364 1076 344 190 64 36 28
19 |2 1220 4016 2572 2092 688 388 136 70 56
20 |2 1974 7204 4850 4068 1342 772 268 138 52

Table 2: Some values of Py(n,t) for n, t where 10 <n <20 and 1 < ¢ < 10.

2 Preliminary results

In this section we give some necessary results and definitions in order to prove our main
results. Also throughout this paper, we use ¢’s, d’s, and N’s to denote positive real constants

(dependent on k).
Let w be a length-n word. Suppose w is closed by a length-t word u. Since u is also the

largest border of w, it follows that w cannot be closed by another word. This implies that

) = i Pk(n, t)

n—1

Cr(n) = Z Ci(n,t) and Py(n
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for n > 1.

Let Bg(n,u) denote the number of length-n words over ¥ that are closed by the word u.
Let Ag(n,u) denote the number of length-n words over ¥ that do not contain the word u
as a factor.

The auto-correlation [9, 10, 11] of a length-t word u is a length-t binary word a(u) =
aias - - - a; where a; = 1 if and only if v has a border of length ¢t —i + 1. The auto-correlation
polynomial fo)(2) of a(u) is defined as

fa(u Zat zz

For example, the word u = entente has auto-correlation a(u) = 1001001 and auto-
correlation polynomial fuq)(z) = 2%+ 2% + 1.

We now prove two technical lemmas that will be used in the proofs of Theorem 2 (b) and
Theorem 3 (b).

Lemma 4. Let k,t > 2 be integers, and let v be a real number such that 0 < v < % Then
1
k' — Atk < (B — )t < B — Atk 57225(75 — k2,
Proof. The case when k = 2 was proved in a paper by Forsyth et al. [7, Lemma 9]. We
generalize their proof to & > 3.

When t = 2, we have k? — 2ky < (k — v)? < k? — 2k + +%. So suppose t > 3. By the
binomial theorem, we have

. [t
kt 7, 1 — kt tkt 1 kt z 7
=Y () =# -t ()
L(t-1)/2] " '
k tkt 1 + kt 27 2] ( ) . kthjfl 2j+1 ( )) )
—7 Z ( 2 T \gi+1

So to show that k' — vtk'™! < (k — ), it is sufficient to show that

ot , , t
kt*Z] 27 > k,t*Q]*l 25+1 1
7 \2j) = T \2j 41 (1)

for 1<j<|(t—=1)/2] <(t—1)/2.

By assumption we have that v < < , 50 7 < 75 and thus 4t — 2y < 6. Adding 2y — 2 to
both sides we get vt — 2 < 4 + 27, and SO “’t+22 < 2 Ifi>2> %, then (v + 2)i > vt — 2.
This implies that 2(i + 1) > v(t — 7), and

S22 t=i ()

2|
= o
-~
+
[u—y
—~~
=



Therefore letting ¢ = 25, we have that k(;ﬂ) > 7(23.11). Multiplying both sides by k!=2/=1~2

we get ki~ (;]) > k212 (2].:1), which proves (1).

Now we prove that (k — )" < k' —ytk!~t 4 14%(t — 1)k'~2. Going back to the binomial
expansion of (k — )", we have

1 ot
(k=)' = k' — 4tk + 57%(1& — 1)k 4 Z Kt (=) (Z>
=3

1
<kt — Atk 57215@ —1)k'2

L(t—2)/2] " t
_ Z kt—2j—1,y2j+1 _ kt—2j—272j+2 )
27 +1 27+ 2

=1
So to show that (k — )" < kf — ytk!~! + $72¢(t — 1)k'~2, it is sufficient to show that

A A t A A t
k,t—?]—l 25+1 > kt—Z]—? 2542
To\gje1) T To\gj 41

for 1 < j < [(t —2)/2]. But we have already proved that k(!) > v(;;,). Letting

i = 2j, we have that k(zjid) > v(thH). Multiplying both sides by k2724271 we get
Y. . e )

Jot—2i 172]+1(2j+1) > kt-% 272y+2(2j+2).

m
Lemma 5. Let ¢ > 1 and k > 2 be integers. Then for any constant v > 0, we have

logi'(n?) |, ifi=1;
1, i1

lim .
oo logy(n)
Proof. When i = 1 we have lim 22070 — ~ Jjy 28l
: nesoo l0g;(n) n—soo 10g(n) :
The proof is by induction on . Since we will use L'Hopital’s rule to evaluate the limit,
we first compute the derivative of log}’(nt) with respect to n for any constant A > 0. We

have
A

i—1 ) '
n [] logy (n?)
j=1

an logj! (n*) =

In the base case, when ¢ = 2, we have

02 _r
lim —log’i,g(m) = lim 2ot
n—oo logk (n) n—00 Py ey o)}
Suppose ¢ > 2. Then we have

ol i—1 .
A = log;? (n
. 1ngz(n»y) . njl;Illong(n'v) . 31;[2 Sk ( )
hmm: lim ———— = lim —
n—oo log, (N n—00 ——g———— n—oo = o
' n _1}1 logy” (n) 1 log; (n”)

J 7=2

=1.



3 Closed words

3.1 Lower bound

We first state a useful lemma from a paper of Nicholson and Rampersad [14].

Lemma 6 (Nicholson and Rampersad [14]). Let k > 2 be an integer. For every n, there is
a unique integer t such that

Ink Ink
B <n—t<——kttt
p_1r STt ST

Let u be a length-t word. There exist constants Ny and d such that for n —t > Ny we have

n

Bi(n,u) > dﬁ'

We now use the previous lemma to prove Theorem 2 (a).

Proof of Theorem 2 (a). The number Cy(n,t) of length-n words closed by a length-t word is
clearly equal to the sum, over all length-t words u, of the number By (n,u) of length-n words
closed by u. Thus we have that

Cr(n,t) = Z B (n,u).

|u|=t

Let t be such that ¢t = |log,(n—t)+log,(k—1)—log,(Ink)|. By Lemma 6 there exist constants
Ny and d such that for n —t > Ny we have By(n,u) > dk™/n?. Clearly t < log,(n) + 1 for
all n > 1. Since t is asymptotically much smaller than n, there exists a constant N > Ny
such that n —t > Ny for all n > N. Thus for n > N we have

k™ f K"
Cul) = Culn ) = 3 Bulmu) = 3 g = (1)
|ul|=t |u|=t
= dkLlogk(n—t)+logk(k—l)—logk(ln’f)Jk_z > dokbgk(n_t)‘Hng(k_l)_lng(lnk)k_z
n n
> di(n — t)ﬁ > di(n —log,(n) — l)ﬁ > ¢~

for some constant ¢ > 0. O



3.2 Upper bound

Before we proceed with upper bounding Cj(n), we briefly outline the direction of the proof.
First, we begin by bounding Cy(n,t) for t < n/2 and t > n/2. We show that for ¢t < n/2, the
number of length-n words closed by a particular length-t word u is bounded by the number
of words of length n — 2¢ that do not have 0* as a factor. For ¢ > n/2 we prove that Ci(n,t)
is negligibly small. Next, we prove upper bounds on the number of words that do not have
0" as a factor, allowing us to finally bound Cj(n).

Lemma 7. Let n, t, and k be integers such that n > 2t > 2 and k > 2. Let u be a length-t
word. Then

Proof. Recall that By(n,u) is the number of length-n words that are closed by the word u.
Also recall that Ay (n,u) is the number of length-n words that do not contain the word u as
a factor.

Let w be a length-n word closed by w where |w| = n > 2t = 2|u|. Then we can
write w = wvu where v does not contain u as a factor. This immediately implies that
Bi(n,u) < Ag(n — 2t,u). But from a result of Guibas and Odlyzko [11, Section 7], we have
that if f,u)(2) > faw)(2) for words u, v, then Ay (m,u) > Ai(m,v) for all m > 1. The auto-
correlation polynomial only has 0 or 1 as coefficients, depending on the 1’s and 0’s in the
auto-correlation. Thus, the auto-correlation p that maximizes f,(2) is clearly p = 1*. The
words that achieve this auto-correlation are words of the form a' where a € ¥j. Therefore

we have

Lemma 8. Let n, t, and k be integers such that n > 2t > 2 and k > 2. Then
Ck(n, t) S k:tAk(n - 2t, Ot)

Proof. The number Cy(n,t) of length-n words closed by a length-t word is equal to the sum,
over all length-t words u, of the number By(n,u) of length-n words closed by u. Thus we

have that

|u|=t
By Lemma 7 we have that By(n,v) < Ag(n — 2t,0") for all length-t words v. Therefore
Ck:(n7 t) - Z Bk(n7 u) < Z Ak(n - 2t7 Ot) < ktAk(n - 2t7 Ot)

ul=t ul=t

Corollary 9. Let n > 1 and k > 2 integers. Then

[n/2]
Cr(n) < Z Kt Ag(n — 2t,0%) + nk/?1,

t=1



Proof. 1t follows from Lemma 8 that

n—1 [n/2]
:ZC’k(nt Zk}tAk n—2t Ot Z C’knt
t=1 t=1 t=|n/2|+1
Now we show that .
Z Cr(n, t) < nk/?l
t=|n/2]+1

Let w = wowy - - - w,—1 be a word of length n that is closed by a word u of length ¢ > |n/2].
Then w = uxr = = yu for some words x, y. So w; = Wiy for all i, 0 < ¢ < ¢. This
implies that w = v'v’ where v is the length-(n — t) prefix of w, ¢ = |n/|v||, and v’ is the
length-(n — i|v|) prefix of v. Since t > |n/2], we have that n —t < [n/2]. We see that w is
fully determined by the word v. So since |v| < [n/2], we have Cy(n,t) < k"2, Thus

n—1
Z Cr(n,t) < > kM2 <M/l

t=|n/2]+1 t=|n/2]+1

Lemma 10. Let n > 0,t > 1, and k > 2 be integers. Then

k™, ifn <t

A= ) S A0, izt

i=1
Proof. If n < t, then any length-n word is shorter than 0f, and thus cannot contain 0° as a
factor. So Ay(n,0") = k™.

Suppose n > t. Let w be a length-n word that does not contain 0° as a factor. Let us
look at the symbols that w ends in. Since w does not contain 0°, we have that w ends in
anywhere from 0 to ¢ — 1 zeroes. So w is of the form w = w'b0* where 7 is an integer with
0<i<t—1,be X —{0}, and w' is a length-(n — i — 1) word that does not contain 0
as a factor. There are k — 1 choices for b, and Ax(n — i — 1,0") choices for w’. So there are
(k —1)Ag(n — i — 1,0%) words of the form w'b0°. Summing over all possible i gives

Ap(n,0") = (k= 1) ZAkn—ZOt

Corollary 11. Letn >0,t > 1, and k > 2 be integers. Then

k™, ifn <t
Ap(n, 0" =< k" — 1, if n=t;
kAg(n —1,0Y) — (k — 1) Ag(n — ¢t — 1,0, ifn >t.
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Proof. Compute Ag(n,0") — Ax(n—1,0") with the recurrence from Lemma 10 and the result
follows. N

Corollary 12. Letn >0, t > 1, and k > 2 be integers. Then
k™, ifn <t
Ap(n, 0" = k" UK — 1) — (n — "k — 1), ift <mn <2t
kAp(n —1,0Y) — (k— 1) Ap(n —t — 1,0Y), if n > 2t.

Proof. We prove t < n < 2t by induction on n. In the base case, when n = ¢, we have
Kt —1=A,(t,0") =kt (k' = 1) — (t — K"k —1) = k' — 1.
Suppose t <n < 2t. Then

Ap(n, 0" = kAu(n — 1,01 — (k — 1) Ag(n — t — 1,0%)
= k("M E D) = (n—1 =)k 2k - 1)) — (k= Dk~
= k"N = 1) — (n— O (k= 1).

O

Since (Ag(n,0")), satisfies a linear recurrence, we know that the asymptotic behaviour of
Ag(n, 0%) is determined by the root of maximum modulus of the polynomial ' —kz!+k—1 =
0. We use this fact to find an upper bound for Ag(n,0").

Lemma 13. Lett > 1 and k > 2 be integers. Let
Be(t) =k — (kK — 1)k~
Then 54(t) > k — (k — 1)ult)
Proof. Since Bi(t) < k, we have that By(t)~" > k=% > k=*=!. This implies that
Bet) =k —(k—1Dk" >k —(k—1)B(t)".
[

Lemma 14. Let k,t > 2 be integers. Let n be an integer such that 2t < n < 3t. Then

Proof. The proof is by induction on n. By Corollary 12 we have that
Ap(n, 09 = k" Mk = 1) — (n — )K" (k= 1)

for t <n < 2t.
Suppose, for the base case, that n = 2t. Let y(t) = (k — 1)k~*~!. Then
Ap(2t,0") = k'(K" — 1) =tk (k — 1) = E* — k"2 (k* + th(k — 1))
(B +th(k -1
:th—’}/<t)k2t 1( k_(l ))

10



Clearly v(t) < 6/t for all t > 2, so Ap(2t) < k* — ~v(6)tk* =1 < (k —(t))* = Br(t)*.
Suppose that 2t < n < 3t. Furthermore let n = 2t 47 + 1 where 7 is an integer such that
0 <4 < t. Notice that Ag(n —t —1,0") = Ag(t +1,0") = k'(k' — 1) — ik *(k — 1). Then
Ap(2t +i+1,0") = kAR(2t +1,0") — (k — 1) Ag(t +,0)
< k(k —5(6)" = (k= DK (' = 1) —ik" (k1))
= (k=) () (k =y (0)* = (k= 1)K (K" = 1) — k"' (k — 1))
= Be(®)* T+ A ()BT — (k — (K (K" — 1) — k" (k - 1)).
To prove the desired bound, namely that Ag(2t + 4+ 1,0%) < SBi(¢)* 1) it is sufficient to
show that S5 (£)* " < ~(t) "1k —1)(k'(k* — 1) —ik" Y(k — 1)). We begin by upper bounding
Br(t)?™ with Lemma 4. We have

. . . 1 ,
Bk(t)Qt—i-z < k2t+z . 7<t> (2t + i)k2t+z—l =+ 57(75)2(215 + i)(2t +i— 1>k2t+z—2

< KA 2(k — 1)tk 4 g(k — 1%

S k,2t+i+1 - (k o 1)k2t+i . Q(k o 1)tkt+i72 4 g(k o 1)2t2ki74
— R (k= DR+ 20k — 1)tk - g(k SR (@)
It is easy to verify that (k — 1)k > k+¢(k — 1) and 2(k — 1)tk=2 — 5(k — 1)?t?k~"~* > 0 for
all ¢ > 2. Thus, continuing from (2), we have
/Bk(t)%—i—i S k2t+i+1 o kt—l-i(k + t(k o 1)) S k2t+i+1 o kt+i<k + Z(k’ . 1))
k,t+1 ] ] )
=1 (k= 1)(K"" — k' — ik 1 (k — 1))
) = DR (R — 1) — Lk 1)),

m
Lemma 15. Let n, t, and k be integers such that n > 2t > 4 and k > 2. Then Ag(n,0") <
Br(t)™.

Proof. The proof is by induction on n. The base case, when 2t < n < 3t, is taken care of in

Lemma 14.
Suppose n > 3t. Then

Ap(n, 0" = (k—1) ZAk n—1,0") < (k—-1) Zﬁk _ _1)5 ()BZ(;)ﬁ_k(lt)n_t

By Theorem 13, we have that fi(t) — 1 > (k — 1) — (k — 1)Bk(t) . Therefore

Br(t)" = Be(t)"™ (F=1) = (k=1)B(®)"

Ap(n, 0" < (k—1) Bu(t) — Br(t) — 1

< Bi(t)".

= B(t)"
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Proof of Theorem 2 (b). First notice that Ag(n,0) = (k — 1), since Ag(n,0) is just the
number of length-n words that do not contain 0.
Let N’ be a positive integer such that the following inequalities hold for all n > N’.

[n/2]
Cr(n) < Y k' Ag(n — 2t,0") + kAg(n — 2,0) + nk["/?!
t=2
[n/2]
< Z ktﬁ n 2t ( . 1)n72+nk,[n/21

Ln/2J n—2t [n/2] n—2t
1 km 1 k—1 k™
t n
<Zk<k_ kt+1) d2 =k Zth(l_kt—i-Q) +d2n

|logy, n] n—2t [n/2]
. 1 k—1 1 kn
5’“<ZE(1_W) D ﬁ)*dﬁ

t=2 t=|log, n]+1
|logy, n] n—2|log;, n| n
n 1 kE—1 k ds k
gk(Z E(l_W) +g>+d2?
t=2
[logy, n) n/2
n 1 kE—1 k™
<k E(l_W> +di—. (3)
t=2

Now we bound the sum in (3). Let h(z) = (1 — (k — 1)k~2z)"2. Notice that h(z) is
monotonically decreasing on the interval z € (0,1). So for k=1 < z < k' we have that

h(x) > h(k™"). Thus

1 k—1\"? k-1 k—1\"? 11 ., i
(S A () (- o

Going back to (3) we have

n

) <k Z / x) dx +d4— < k"“/ h(z)dz + dy—.
k 0 n
Evaluating and bounding the definite integral, we have

/olh<x)d"’“":— < {“‘(’f—l)k—%)n/ulrl

E—1 n/2+1 o0
B k‘2 (1 o (k . 1)k—2)n/2+1 -1
T k- n/2+1
o o —2\n/2+1
1-— 1 1)/{: ) < ds 1 S%
n/2—|—1 n/2+1

12



Putting everything together, we have that

' P S R
C’k(n) S k’n+1/ h(l‘) dx + d4? S d(g n + d4— S C/—
0

n n

for some constant ¢ > 0. [

4 Privileged words

4.1 Lower bound

In this section we provide a family of lower bounds for the number of length-n privileged
words. We use induction to prove these bounds. The basic idea is that we start with the
lower bound by Nicholson and Rampersad, and then use it to bootstrap ourselves to better
and better lower bounds.

Proof of Theorem 3 (a). The proof is by induction on j. Let ¢ be such that ¢t = |log,(n —
t) + log,(k — 1) — log,(Ink)|. We clearly have 0 < ¢ < log,(n) + 1 for all n > 1. Let u be
a length-¢ privileged word. By Lemma 6 we have that there exist constants Ny and ¢ such
that Py(n) > Bi(n,u) > C()Z—Z for all n > Ny. So the base case, when j = 0, is taken care of.

Suppose j > 0. By induction we have that there exist constants N;_; and c¢;_; such that

kTL

Pi(n) > c;— 4 A ,
2 O ogT o T o )

for all n > N,_;. By Lemma 6 we have

n k'fl
Py(n) > Pi(n,t) > > Bi(nu)> Y d—5 = dPi(t) .
u plr?\lfﬁgged u pLLibxlfﬁgged
. l 1 .
for n > Ny. Since t < log,(n) + 1, we have that o @ > oaT (e ()7 T) for all # > 0. Thus
continuing from above we have
Lt kn klogk(n—t)-i—logk(k—l)—logk(lnk) km
Py(n) = dej oj—1 T e 3 2 dz oj—1 J=11_ oi/m 2
tlog, () Hizl logy!(t) n tlog,; (t) Hi:1 logy'(t) n
1 k™
> dg oj—1 =17 o/ o
tlog, () Hizl logy!(t) n
1 k™
> dy oj—1 =171 oi n
(logi(n) + 1) log,” " (log,(n) + 1) [T;; logy’ (logy(n) + 1) n
k’I’L
2 ¢ oj 7 oi
nlog,’ (n) [T]_, log}'(n)
for all n > N; where N; > max(No, N;_q). O

13



4.2 Upper bound

In Theorem 2 (b) we proved that Cy(n) € O(£). Since every privileged word is also a
closed word, this is also shows that Py(n) € O(%) This bound improves on the existing
bound on privileged words but it does not show that Py(n) and Ci(n) behave differently
asymptotically. We show that Py(n) is much smaller than Cy(n) asymptotically by proving
upper bounds on Pj(n) that show Py(n) € o(£-).

Lemma 16. Let n, t, and k be integers such that n > 2t > 2 and k > 2. Then
Py(n,t) < Py(t)A(n — 2t,0").

Proof. The number of length-n privileged words closed by a length-t privileged word is equal
to the sum, over all length-¢ privileged words u, of the number By(n,u) of length-n words
closed by u. Thus we have that

Pe(n,t)= Y Bi(n,u).

|u|=t
u privileged

By Lemma 7 we have that By(n,v) < Ag(n — 2t,0") for all length-t words v. Therefore

Pu(n,t)= > Binu)< Y Ag(n—2t,0") < Pu(t)Ap(n — 2t,0%).

u|=t |ul=t
u privileged u privileged

O

Proof of Theorem 3 (b). For n > 2t we can use Lemma 16 to bound Py (n,t). But for n < 2t,
we can use Corollary 9 and the fact that Py(n,t) < Ci(n,t). We get

n—1 [n/2]
Py(n) = Z Py(n,t) < Z Pi(t)Ag(n — 2t,0%) + nkM/21,
t=1

t=1

The proof is by induction on j. The base case, when j = 0, is taken care of by Theorem 2 (b).
Suppose j > 0. Then there exist constants N;_; and ¢}_; such that

kn
) = o T ot

for all n > NI ;. We now bound Py (n). First, we let N > N}, be a constant such that the
following inequalities hold for all n > NI. We have

14



[n/2]
Pe(n) < Y7 Pu(t)Ap(n — 2t,0%) + nkl"/?]

t=1
[n/2] Y N
< Z C;—lmﬁk(t)”—ﬂ + Z Pk(t)Ak(n — 2t, Ot) + nk_[n/z]
t=N;+1 i=1 108 o
3 ' n—2t n—2t
k k—1 k"
S C/A_lf <k‘ — > + le < > . dll
tz%“ T ITS logg (1) ket Z RS
2 n—2t
1 k—1 kN
<d._ k" Z T (1 _ ) L
J =N ktt ngl logkz(t) Lt+2 2
[logy(n)] o2
1 k—1
< C Y <d13 Z — (1 _ )
t=N/+1 kit ]T/Z; logy' () kt+2
[n/2]
- o1 + d127
t= Uogz(:n kttl_[ logk’(t) n2
[logy.(n)]
1 n k1
<d_ k" <d13 Z — - €xp ( In (1 _ ))
’ t=N/+1 Kt T2 logy! () 2 Lt+2
S 1 -
+ - + dio—. 4
Llo§UL K TT 1ong<t>> P n? (4)

The sum on line (4) is clearly convergent. We have

o0

1 1 1
Z i TTi-1 oi < -1 oi Z E
t=|logy (n)|+1 k 2fl_Ii:l 10gk (t) (Uogk(n)J + 1) Hi:l logk (Uogkz(nﬂ + 1) t=logy (n) |+1
1 1 1
<dy - - —<d

— o = t14 ] o1 :
log;(n) Hf:ll log;’ (log.(n)) 7 n][/_ log;'(n)

o0

Now we upper bound the sum
logy(n) ]

1 n k—1
D, = — - exp (— In (1 — —))
2 o P k2

k—1
2k2

It is well-known that In(1 — z) < —z for || < 1. Thus, letting o = we have

n E—1 n
exp (Eln (I_W)) Sexp(—aE)

15



We reverse the order of the series, by letting ¢ be such that ¢t = [logy(n)] — ¢+ Nj + 1. We
also shift the index of the series down by N + 1. We have

[log, ()] —N/—1

n
Dy = S — xp (= e Tt
2 kllog(m 1=t ({log;,(n)| — t) [T/Z; logf ([logy.(n)] — 1) ( felosi ()] t)

t=0

Llog, (m)] — N -1 o

<d . -
sds ) n(logy,(n) — t) [122} log} (logy,(n) — t)

t=0
[logy (n) ] —N;—1

exp (—ak')

1 Kt
B — exp (—ak?). (5)
n szl logkz (n) ; ]Hl logk‘(logfl(n)ft)
- logp' ™ (n)
=0

Suppose [ is a positive constant strictly between 0 and 1 such that Slog,(n) is an integer

log* (logy, (n log?i 1 (n1=5)
and flog,(n) < [log,(n)] — Nj — 1. If t < flog,(n), then gf (Mikl((n)) D> Oigmfl( 2 d;
for some d; > 0 by Lemma 5. If ¢ > flog,(n), then logf (liikl(:)) D> l‘fggofﬁ:). We split
(0} k n

up the sum in D,, in two parts. One sum with ¢ < flog,(n) and one with ¢ > Flog,(n).
Continuing from (5) we get

j-1 llogy, (n)] —N}—1

1 7™ kt t InglH( ) t t
< d15j4< Z eXp( ak + H (bg(]\ﬂ{»l)) Z k exp (—Olk ))
n [ logli(n) © =1 H d! j t=B1ogy (n)+1

i=1

1 - ! o1 -
< d15j7 (dlg Ztexp (—at) + diy H logz'(n) Z t exp (—at)).

n [llogt/(m) © =1 L e

i=1

The first and second sum are both clearly convergent. It is also easy to show that both of
them can be bounded by a constant multiplied by the first term. Thus, we have that

1 ! , kn® 1
D, < dis - » (d18 + dyg | | logy' (n —> -
n[I_, logy'(n) H " exp (akn?) H logi'(n)
Putting everything together and continuing from line (4), we get
1 k" k™
Py(n) < k" (dISDn + diy ) +dip— < 5
nHz 1 logy'(n ( ) n? J”H  logy'(n)
for some constant c;- > 0. ]

5 Open problems

We conclude by posing some open problems.

In this paper we showed that Ci(n) € ©(%-). In other words, we showed that C(n) can
be bounded above and below by a constant times k" /n for n sufficiently large. Can we do
better than this?
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Open Problem 17. Does the limit
Cr(n)n

1 _=N 7

n—00 kn

exist? If it does exist, what does the limit evaluate to? If it does not exist, evaluate

lim infM and limsup
n—00 kn n—00

Cr(n)n
kno

In this paper, we also gave a family of upper and lower bounds for Py(n). But for every
j > 0, the upper and lower bounds on Py(n) are asymptotically separated by a factor of
1/log}’ (n). Let £, denote the smallest positive integer such that logy ™ (n) < 1. Let log}(n)
denote the product

z'n,
[T 10g (n).
j=1

Open Problem 18. Is P.(n) € ©(—*2—)?

nlogjy(n)

This problem can probably be solved by a careful analysis of the constants introduced
on every step in Section 4.

Open Problem 19. Does the limit

lim Py (n)nlogi(n)

n—00 kn

exist? If it does, what does the limit evaluate to? If it does not exist, evaluate

lim inf Pk(n)nlogk(n) and limsup Pk(n)nlogk(n).

n—00 kn n—00 km

We suspect that the first limit in problem 17 and the first limit in problem 19 do not exist
due to a result of Guibas and Odlyzko [9] on prefix-synchronized codes. Every codeword in
a prefix-synchronized code of length n begins with the same prefix u of length p < n. Each
codeword is a prefix of a closed word of length n + p that is closed by u. They proved that,
for 2 < k < 4, the size M,, of a maximal prefix-synchronized code of length n oscillates such
that the limit lim, ., M,n/k™ does not exist. They mention that their approach can be
generalized for k > 5, but that the proof is much more complicated.
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