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Abstract
We present sufficient conditions for when an ordering of universal cycles a;, s, . . ., ay, for disjoint
sets S1,S9,...,S,, can be concatenated together to obtain a universal cycle for S = S; USy U --- U S,,,.

When S is the set of all k-ary strings of length n, the result of such a successful construction is a de Bruijn
sequence. Our conditions are applied to generalize two previously known de Bruijn sequence constructions
and then they are applied to develop three new de Bruijn sequence constructions.

1 Introduction

Let X5, = {0,1,...,k — 1} be an alphabet of £ > 2 symbol and let ¥} be the set of k-ary strings of length
n. Given a non-empty subset S of X7, a universal cycle for S is a sequence of length |S| that contains every
string in S as a substring exactly once when the sequence is viewed circularly. A universal cycle is said to be
a de Bruijn sequence in the case that S = ¥3?. For example,

000111222121101201002102202

is a de Bruijn sequence for Zg. It is well known that de Bruijn sequences are in one-to-one correspondence
with directed Euler cycles in a related de Bruijn graph. However, algorithms to find Euler cycles in graphs
require that the graph be stored in memory, and the de Bruijn graph is exponential in size. Amazingly, a prefer-
smallest greedy approach [9, 17] generates the lexicographically smallest de Bruijn sequence [10]; however,
like other preference-based methods [2], including prefer-same [5, 11] and prefer-opposite [1] in the binary
case, it also requires an exponential amount of memory. As a result, there has been significant research to
efficiently construct de Bruijn sequences for arbitrary n and k. The majority of this work constructs de Bruijn
sequences via a successor-rule, finding one symbol at a time using the previous n symbols. Of this work,
most apply only to the case when k = 2 [4,7,8,10,15,16,24], although several approaches generalize to larger
alphabets [3,6,10,26]. In the best case, these algorithms require O(n)-time per symbol and use O(n)-space.

The most efficient constructions of de Bruijn sequences arise from a concatenation approach, with some
generating each symbol in O(1)-amortized time using O(n) space. However, very little is known about
these constructions in general. The first such construction was given by Fredericksen and Maiorana [12]. To
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describe their approach we need the following two definitions. A necklace is the lexicographically smallest
string in an equivalence class under rotation. The periodic reduction of a string o = ajaz---a, 1s ajaz---ap
where p is the smallest integer such that o = (ag agu-ap)”/ P where exponentiation denotes concatenation.

They show that the lexicographically smallest de Bruijn sequence’

can be constructed by concatenating to-
gether the periodic reductions of all k-ary necklaces of length n listed in lexicographic order. An analysis

in [19] shows that this construction generates each symbol in O(1)-amortized time using O(n) space.

Example 1  The set of necklaces of length n = 4 when k& = 2 is {0000,0001,0011,0101,0111,1111}. By
concatenating the periodic reduction of each necklace in lexicographic order we obtain the following de Bruijn
sequence for 5

0-0001-0011-01-0111-1

where - is used to denote concatenation for clarity.

There is a very subtle point in the description of this algorithm. Are the periodic reductions listed in lexi-
cographic order, or are the necklaces first listed in lexicographic order and then the periodic reductions are
applied? It turns out, that when using lexicographic order, it does not matter; the two listings are equivalent.
This is pointed out by Ruskey [18] who also describes the algorithm as the concatenation of all Lyndon words
whose length divide n in lexicographic order, where Lyndon words are necklaces equal to their periodic reduc-
tions. Interestingly, these approaches are no longer equivalent when we consider a co-lexicographic (colex)
order as pointed out in [4]. If we order the periodic reductions in colex order for n = 4 and k = 2 we obtain

0-1-01-0001-0011-0111 =0101000100110111

which is not a de Bruijn sequence (it has no substring 1111). However, by first ordering the necklaces in colex
order and then taking their periodic reductions, it is proved by Dragan et al. [3] that for any £ > 2 and n > 1
the result is a de Bruijn sequence for 3J}'. When k = 2 and n = 4 this construction produces the following de
Bruijn sequence

0-0001-01-0011-0111-1.

When k = 2, by applying an algorithm in [25] each symbol can be generated in O(1)-amortized time using
O(n) space. When k > 2, each symbol can be produced in O(n) time [3], and it remains an open problem
to improve this bound. For each of these two concatenation approaches, observe that the periodic reductions
correspond to universal cycles for each necklace equivalence class.

The main result of this paper is to provide more general conditions for when universal cycles
a1,0Q2,. ..,y for disjoint subsets S1,S,,...,S,, of ¥}’ can be concatenated together to obtain a univer-
sal cycle for S =S U Sa U --- U S,;,. Our results can be applied to:

* generalize the lexicographic concatenation scheme by Fredricksen and Maiorana [12],
* generalize the colex concatenation scheme by Dragan et al. [3],

* obtain a new de Bruijn sequence construction that in the binary case is observed to be equivalent to the
successor-rule based algorithm in [26], and

* obtain two new binary de Bruijn sequence constructions based on co-necklaces (defined in Section 4.2).

!"They actually show (equivalently) their approach produces the lexicographically largest de Bruijn sequence.



These results generalize preliminary work presented at WORDS 2017 [13].

In addition to the two concatenation schemes presented earlier, two others are known to construct uni-
versal cycles for subsets of binary strings. One generalizes Fredricksen and Maiorana’s approach for binary
strings with a minimum specified weight (number of 1s) [23], and another is based on cool-lex order that
applies to binary strings in a given weight range [20-22]. Each algorithm constructs universal cycles in O(1)-
amortize time per bit using O(n)-space. The sufficient conditions presented in this paper do not apply to
these algorithms.

The remainder of this paper is presented as follows. In Section 2, we present background definitions
and notation. In Section 3, we present our main results which provide sufficient conditions for when smaller
universal cycles can be concatenated together to create a new larger universal cycle. In Section 4, we apply
our conditions to generalize previously known de Bruijn sequence constructions and to develop three new and
generalized de Bruijn sequence constructions.

2 Background Definitions and Notation

Let @ = ajas---ay, and 3 = bybs---by, be two distinct k-ary strings. Then a comes before (3 in lexicographic
(lex) order if «v is a proper prefix of 3 or if a; < b; for the smallest ¢ where a; + b;. We say that « comes before
B in colexicographic (colex) order if « is a proper suffix of 3 or if a; < b; for the largest ¢ where a; + b;. Given
a set S of strings of arbitrary length, let

¢ lex(S) denote the strings of S listed in lex order,
* revlex(S) denote the strings of S listed in reverse lex order,
¢ colex(S) denote the strings of S listed in colex order, and

* revcolex(S) denote the strings of S listed in reverse colex order.

Example 2 LetS = {0101, 21201, 12020, 000, 220,02102}. Then

lex(S) = 000,0101, 02102, 12020, 21201, 220, colex(S) = 000, 12020, 220,0101,21201, 02102,
revlex(S) = 220,21201, 12020, 02102,0101,000, revcolex(S) =02102,21201,0101,220, 12020, 000.

Let a = ajag---as and B = byba---b; be two strings with s,¢ > n > 0. Let suff,, () be the length n suffix
of o and pre,, (o) be the length n prefix of . For example, suff3(0032233) = 233 and pre;(0032233) = 003.
The set of necklaces whenn =5 and k = 2 is

S = {00000, 00001,00011,00101,00111,01011,01111,11111}.
When you order S in colex order, an interesting property between adjacent necklaces becomes apparent,
colex(S) = 00000,00001,00101,00011,01011,00111,01111,11111.

Observe that for any two adjacent necklaces o and 7 in the above listing, if j is the smallest index where 7 is
not 0 at index j, then o and 7 share a length n — 5 suffix. For example, consider the adjacent necklaces 00111



and 01111. Atindex 2, 01111 is not 0, and in fact this is the smallest index for which this is true. With this
index, we predict that the longest matching suffix is of length 5 — 2 = 3, which we can easily verify to be true.
The following two properties generalize this idea, and extend it to prefixes.

Suffix-related: Let 2 € ¥, and let j be the smallest index of 3 such that = # b;, or oo if no such j
exists. Then the ordered pair of strings (v, 3) is said to be suffix-related with respect to (x,n) if j < n and
suff,,_; (o) = suff,,_;(B).

Prefix-related: Let x € XJ;, and let j be the smallest index of « such that x # a,_j, or oo if no such j
exists. Then the ordered pair of strings («, 3) is said to be prefix-related with respect to (xz,n) if j < n and

pre,,_;_1(a) =pre,_;_1 ().

Example 3 Let o = 00001200, 5 = 02000200, z = 0 and n = 5,

The smallest index j of 8 such that b; # z is j = 2. Note, suff;_5(00001200) = suff5_5(02000200) = 200. Thus,
(a, B) are suffix-related with respect to (0, 5).

The smallest j > 0 such that a,_; # z is j = 2. Note, 00 = pre;_,_, (00001200) # pre;_,_;(02000200) = 02. Thus,
(v, B) are not prefix-related with respect to (0, 5).

Let ext,(a) = of, where t is the smallest integer so t|a| > n. Let sub,,(a) be the set of all length n
substrings in the cyclic string .. For example, sub3(01201) = {012,120,201,010,101} and subs(02) =
{02020, 20202}

3 Concatenating Universal Cycles

Let S be a non-empty subset of X}'. A partition of S into subsets S1,So,...,S,, is called a UC-partition if
there is a universal cycle o; foreach S;, 1 <¢ < m.

Example 4 The following sets

S; = {00000,00001,00011,00111,01111,11111,11110, 11100, 11000, 10000},
S, = {00100,01001,10011,00110,01101,11011,10110,01100, 11001, 10010},
S; = {00010,00101,01011,10111,01110, 11101, 11010, 10100, 01000, 10001},
S, = {01010, 10101},

together form a UC-partition of ¥5 with universal cycles
oy =0000011111, ce =0010011011, a3 = 0001011101, cg = O1.
The sets are pairwise disjoint and their union is 3.

Given a UC-partition for a set S along with their corresponding universal cycles, we present conditions
for when the smaller universal cycles can be concatenated together to obtain a universal cycle for S.



Theorem 3.1 Let S1,S»,...,S,, be a UC-partition of S ¢ Xy with universal cycles ay,a,...,an
where x is the first symbol in oy and Uy, 5, = a1 aa-uy. If the following three conditions hold,

1. |ai| 2 n,
2. «q has a largest prefix of consective x’s out of all c;,1 <i<m,

3. Foreach1<i<m, (exty(a;),ext,(ai+1)) are suffix-related with respect to (z,n),

then Uy, , is universal cycle for S and suff,,(Up, ») = suff,, (exty(am,)).

Proof. The proof is by induction on m. In the base case when m = 1, U ,, = a1 is a universal cycle for Sq, and
by assumption |a | > n so suff,, (U ) = suff, (ext, («1)). Inductively, assume U, , is a universal cycle for
S - S, and suff,, (Upm-1,n) = suffy, (ext, (m-1)), for m > 1. Consider Uy, 5, = Upy—1 ntm. Let:

e 1 = gngg(I7
o suff, (ext,(m-1)) = a1az an,
. eth(Ozm) = ajj_lbjbj+1---bs,

where j is the smallest index where b; # x. First we show that suff,, (U, ) = suff,, (ext, (am,)). If || > n,
clearly suff,, (a,) is a suffix of Up,—1 ptm. If |ouy| < n, suffy, (ext, (oum,-1)) appears as a suffix of Us,—1
by the inductive hypothesis. By assumption suff,,_;(ext, (., )) = suff,_;(ext,(am-1)), so a suffix of Uy, ,,
will be 5 = suff,,_;(ext, () )y, which shares a suffix of length min(|5], |ext,, (am,)|) with exty, (am, ).
Since j < |ayyl, it must be the case that || = n — j + || > n, and thus min(|F], lext,(a;,)]) > n.
Therefore, suff,,(Up, ) = suff,(ext,(a,)). Now we prove that U, , is a universal cycle for S. By
the inductive hypothesis, U, , will contain all of the strings in S - S,,, except for possibly the strings
{agas--ang1,asaq--ang192, - - -, ang1---gn-1} Which were involved in the wraparound. However, we know
that suff,,_; (ext, (v )) = suff,,_;(ext, (am-1)) and suff,, (ext, (o)) = suffy,(Up, ,, ). This implies that each
string in {@;+1aj42°-an G195, ;420543 An g1 j+1s - - -, Ang1---gn-1} OCcurs as a substring in the wrap-
around of the cyclic Uy, ,. Furthermore, the strings {agas---anz, azas---apze, ... ,ajaj+1---anxj_1} exist
within Uy, ,, because oy, has prefix 2/l = g1---gj-1. Thus, the cyclic Uy, , contains each string in S — S, as
a substring. Finally, we show that all strings in S,,, occur as a substring in U, ,, (when considered cyclicly).
Those that are not trivially substrings of a,, occur either in the wrap-around or have their prefix as a suffix in
Upm-1,, and suffix in a prefix of vy,. Lett =s-n,i =1+ j, and

¢ Ty = {brasbis o, bagbeabyz, . bibiur-byd 1),
e THh = {bi+1bi+2"'bsl‘j_lbj, bi+2bi+3--'bsl'j_1bjbj+1, R bz+1-"bn$j_1bjbi+1-"bz},

where z = n if |au,| > n and 2 = |, | otherwise. Notice that T and T together cover all length n substrings
in the wraparound of . Each string in T occurs in the wraparound of U, ,, since suff, (ext, (cy,)) =
suff,, (U, ), and the prefix of o has a run of x at least as big as the run in the prefix of a,,. Since
suff,,_; (ext, (am)) = suff,_;(ext,(om-1)), each string in T has a prefix in Up,—1,, and a suffix in oy,
so each string in Ty occurs as a substring of U, ,. We have shown that S ¢ sub,, (U, ) and by construction
\Upnn| = |S|. Thus, Uy, ,, is a universal cycle for S. O



Example 5 From Example 4, the UC-partition Sy, S, S3, S, of X5 with universal cycles oy, o, a3, iy satis-
fies the conditions of Theorem 3.1. Thus, the concatenation

ajasaszay = 0000011111 - 0010011011 - 0001011101 - 01

is a universal cycle for ¥5.
Let rev(«) denote the reverse of the string . Let oy, g, ..., ayy, be a list of strings of length at least n

where (a;, a;41) are prefix-related with respect to some (x,n) for 1 <4 < m. Then (rev(a;s1),rev(a;)) are
suffix-related with respect to (x,n). Thus Corollary 3.2 follows from Theorem 3.1.

Corollary 3.2 Let S1,Ss,...,S,, be a UC-partition of S ¢ X}! with universal cycles oy, o, ..., o
where x is the last symbol in oy, and Uy, n, = a1o--auy,. If the following three conditions hold,

1. |am| 2 n,
2. «auy has a largest suffix of consecutive x’s out of all o;,1 < i <m,

3. Foreach1<i<m, (exty(c;),ext,(ai+1)) are prefix-related with respect to (x,n),

then Uy, , is universal cycle for S and pre,(Up, ) = pre,, (ext,(a1)).

4 New Universal Cycle Concatenation Constructions

In this section we apply the results from the previous section to produce five new universal cycles based on
concatenating together smaller universal cycles. A direct consequence of each result is a unique de Bruijn
sequence construction; the first two were previously known and the last three are new.

Each of our constructions follows the approach outlined in Section 1 of concatenating the periodic reduc-
tions of a listing of strings. The function UC is defined on a listing of strings £ = a1, g, ..., o as follows,
where pr(«) is the periodic reduction of «:

UC(L) = pr(a1)pr(az)-pr(a;).

Example 6 If £ =1111,1212,13213,23131, 32312, 331331, then

UC(L£)=1-12-13213-23131-32312- 331.

In the next subsection we outline three concatenation constructions based on necklaces. Then, we define
co-necklaces and use them to outline two more constructions.



4.1 Necklaces

Recall that a necklace is the lexicographically smallest string in an equivalence class of strings under
rotation. Let Necky(n) denote the set of k-ary necklaces of length n. For example, Necks(3) =
{000,001, 002,011,012,021,022,111,112,122,222}. 1t is well known that {sub,(«) : « € Necky(n)}
is a partition of X;’. By applying the results from Section 3, we obtain three de Bruijn sequence constructions
that are generalized to some subsets of ¥}’

4.1.1 Necklaces in Lex Order

Theorem 4.1 Forn > 2 and m > 2, let oy, a, . . ., Qu, be the last m strings in lex(Neckg(n)). Then
U=UC(a,as,...,an) is a universal cycle for S = U, suby, (o).

Proof. Observe that oy, = (k- 1)" and ay-1 = (k- 2)(k — 1)1, so the last symbol in the sequence
Uisz = k—-1. Note that o, ; = pr(am-1)pr(am,) = (k—2)(k—-1)" is a universal cycle for S,,-; =
suby, (am-1) Usuby, (o). Let S; = suby,(a;) and o = pr(a;) for 1 <i <m—1. Then S1,Ss,..., S,
is a UC-partition of S with universal cycles o, o, ..., al,_; where x = k — 1. To prove that ¢/ is a universal
cycle for S we show that the three conditions of Corollary 3.2 hold.

1. Clearly |, 4| 2 n.
2. o/, has suffix 2", which must be maximal since all of the universal cycles are disjoint.

3. We must show that consecutive strings in ext, (o} ), ext,(a5), ..., ext,(al,_;) are prefix-related with
respect to (z,n). Notice that o,,—1 is a length n prefix of ext,, (o, ;) and ext, (o) = o; for 1 < i <
m~—1. So we only need to show that («;, o471 ) are prefix-related with respect to (z,n) for 1 <i <m-1.
The proof is by contradiction. Let a;; = ajag---a, and a1 = biby---b, for some 1 < ¢ < m — 1. Let
J be the smallest index of «; such that a,,_; # x. Suppose aiaz---a,—j-1 # bibz---b,_;j_1. Then there
exists some smallest s < n — j such that as # b,. Since a; comes before ;.1 in lex order, then a4 < b;.
However, since «; is a necklace, then y = ajas---as(k—1)""° will also be a necklace. But this means that
~ comes between «; and «;;1 in lex order, which is a contradiction. So ajaz---a,—j-1 = biba---by_;_1,
which implies pre,,_; ;(c;) = pre,_;_1(ci+1). Thus the pair of strings (c;, ;1) are prefix-related
with respect to (z,n). -

When m = |Necky(n)|, the above theorem yields the following corollary which describes an equivalent

construction to the (lexicographically smallest) de Bruijn sequence construction from [12].

Corollary 4.2 Forn > 2, UC(lex(Necky(n))) is a de Bruijn sequence for ¥j..

Example 7 Consider the set Necks(6) listed in lex order:
000000, 000001, 000011, 000101, 000111,001001,001011,001101,001111,010101,010111,011011,011111,111111.
By Corollary 4.2, the following is a de Bruijn sequence,

0-000001 - 000011 - 000101 - 000111, 001 - 001011 - 001101 - 001111 -01-010111-011-011111 - 1.
By Theorem 4.1, 011 - 011111 - 1, is a universal cycle for subg(011) Usubg(011111) U subg(1).



4.1.2 Necklaces in Colex Order

Theorem 4.3 Forn > 2 and m > 2, let a1, aa, . ..,y be the first m strings in colex(Necky(n)). Then
U=UC(an,qs,...,an) is a universal cycle for S = U, sub,, (o).

Proof. Observe that oy = 0™ and ap = 0”71, so the first symbol in the sequence U/ is 2 = 0. Note that
af = pr(ai)pr(az) = 01" is a universal cycle for S; = sub,(a1) U sub,(a2). Let S; = sub, (1)
and o = pr(a;+) for 2 < ¢ < m. Then S;,Ss,...,S,,-1 is a UC-partition of S with universal cycles
af,ah, ... a),_; where z = 0. To prove that I/ is a universal cycle for S we show that the three conditions of
Theorem 3.1 hold.

1. Clearly |o}] > n.
2. o] has prefix ", which must be maximal since all of the universal cycles are disjoint.

3. We must show that consecutive strings in ext, (o} ), ext, (as), ..., ext,(al,_;) are suffix-related with
respect to (z,n). Notice that v is a length n suffix of ext,(«]) and ext,(a}) = a;.1 for 2 < < m.
So we only need to show that («, a;,1) are suffix-related with respect to (x,n) for 2 < ¢ < m. The
proof is by contradiction. Let o; = ajag---a, and ay.1 = biby---b, for some 1 < ¢ < m. Let j be the
smallest index of ;.1 such that b; # x. Suppose a;+1a;+2:--ay, # bj4+1bj12:-by,. Then there exists some
largest s > j such that ag # bs. Since «y; comes before a;.1 in colex order, then as; < bs. However,
since «;41 is a necklace, then ~y = 05 bgbgs1---by, will also be a necklace. But this means that v comes
between «; and «;41 in colex order, which is a contradiction. So ajy1a;j.2-*an = bj11bj42:--by, Which
implies suff,,_;(c;) = suff,,_;(a;+1). Thus the pair of strings (c;, a+1) are suffix-related with respect
to (x,n).

O

When m = |Necky(n)|, the above theorem yields the following corollary which describes a construction

equivalent to the de Bruijn sequence construction from [3].

Corollary 4.4 Forn > 2, UC(colex(Necky(n))) is a de Bruijn sequence for ;..

Example 8 Consider the set Necks(6) listed in colex order:
000000, 000001, 001001, 000101,010101,001101,000011,001011,011011,000111,010111,001111,011111,111111.
By Corollary 4.4, the following is a de Bruijn sequence:

0-000001 - 001 -000101-01-001101 - 000011 - 001011 -011-000111-010111-001111-011111 - 1.
By Theorem 4.3, 0 - 000001 - 001, is a universal cycle for subg(0) U subg(000001) U subg(001).

4.1.3 Rotations of Necklaces in Reverse Lex Order

Consider Necks(5) listed in reverse lex order: L =11111,01111,01011,00111,00101, 00011, 00001, 00000.
Observe that UC(L) = 10111101011001110010100011000010 is not a de Bruijn sequence since, when
considered in a cyclic way, it does not contain the substring 00000. However by looking at specific rotations



of these strings in reverse lex order we obtain positive results. Let Ry (n) be the set of all & = ajag---ay, such
that a;,1a;12:-apai---a; is in Neckg(n), where i is the largest index of « such that a; # 0. For example,
Ro(5) = {11111,11110,10110, 11100, 10100, 11000, 10000, 00000} .

Theorem 4.5 Forn > 2 and m > 2, let a1, o, ..., oy, be the last m strings in revlex(Ry(n)). Then
U=UC(an,qs,...,an) is auniversal cycle for S = U, suby, (o).

Proof. Observe that o, = 0" and ;-1 = 10™71, so the last symbol in the sequence U/ is x = 0. Note
that o, = pr(am-1)pr(am,) = 10" is a universal cycle for S,,—; = sub,,(am-1) U sub,(a;,). Let
S; = sub,(o;) and o] = pr(a;) for 1 < i < m —2. Then Sy,Ss,...,S;,-1 is a UC-partition of S with
universal cycles o, a5, ..., al, | where x = 0. To prove that { is a universal cycle for S we show that the
three conditions of Corollary 3.2 hold.

1. Clearly |o,_4| > n.
2. af,_; has suffix 2", which must be maximal since all of the universal cycles are disjoint.

3. We must show that consecutive strings in ext, (a}),ext,(as), ... ext,(al,_;) are prefix-related with
respect to (z,n). Notice that o,,—; is a length n prefix of ext,, (o, ;) and ext, (o)) = o; for 1 < i <
m~—1. So we only need to show that («;, o471 ) are prefix-related with respect to (z,n) for 1 <i <m-1.
The proof is by contradiction. Let a;; = ajag---a, and a1 = biby---b, for some 1 < ¢ < m — 1. Let
J be the smallest index of «; such that a,,_; # x. Suppose aiaz---a,—j-1 # biba---b,_;j_1. Then there
exists some smallest s < n — j such that a; # bs. Since «; comes before «;,; in reverse lex order,
then as; > bs. Let v = ajao---as0"°. Clearly « is between «; and ;.1 in reverse lex order, and
0" %aja9---as is a necklace since 0™ ° is the largest run of zeroes within the string, a contradiction. So
a1a2+ap_j-1 = b1ba--b,_;_1, which implies pre

n—j-1(ai) = pre,_;_q(ajs1). Thus the pair of strings

(i, avj41) are prefix-related with respect to (z,n).
m

Corollary 4.6 For n > 2, UC(revlex(Ry(n))) is a de Bruijn sequence for 3j..

The concatenation scheme described in the above corollary was originally motivated by considering the
successor-rule based construction in [26]. Although we do not prove it here, the two constructions produce
the same de Bruijn sequences when k = 2, but produce different sequences for & > 2.

Example 9  Consider the set R(6) listed in reverse lex order:
111111,111110,111100, 111000, 110110, 110100, 110000, 101110, 101100, 101010, 101000, 100100, 100000, 000000.
By Corollary 4.6, the following is a de Bruijn sequence:

1-111110-111100-111000-110-110100-110000-101110-101100-10-101000 - 100 - 100000 - 0.
By Theorem 4.5, 100 - 100000 - 0, is a universal cycle for subg(100) U subg(100000) U subg(0).



4.2 Co-necklaces

For this subsection we will be working over the binary alphabet 3o = {0, 1}. Let v be a binary string and let &
denote its bitwise complement. We say that « is a co-necklace if aicx is a necklace. The set of all co-necklaces
of length 5 is {00000, 00010,00100,010101}. If «v is a co-necklace, then we call a an extended co-necklace.
Let coN(n) denote the set of all extended co-necklaces for co-necklaces of length n. For example, coN(5) =
{0000011111,0001011101,0010011011,0101010101}. It is well known that {sub, (@) : & € coN(n)} is a
partition of ¥%; they correspond to the partition obtained from the complemented cycling register [14]. Using
extended co-necklaces, we apply Theorem 3.1 and Corollary 3.2 to construct new universal cycles for subsets
of ¥4 and ultimately to produce two new binary de Bruijn sequence constructions. Unlike necklaces, we
cannot simply use lex or colex orderings. For example, neither

UC(lex(coN(5))) = 0000011111 - 0001011101 - 0010011011 - 01, or

UC(colex(coN(5))) = 01-0001011101 - 0010011011 - 0000011111

are de Bruijn sequences, since neither contains the substring 10101.

4.2.1 Extended Co-necklaces in Reverse Colex Order

The following lemma will be useful in the proof of our universal cycle construction using the reverse colex
order of extended co-necklaces.

Lemma 4.7 Let o = ajay---ag, and o = byby---ba, be consecutive strings in the listing revcolex(coN(n)).
Then pre,, () comes before pre, (') in colex order.

Proof. Since a, o € colj(n)_,a = BB and o' = 3’3 for some 3, 3" € 5. Because o comes before o in
reverse colex order and 5 # [/, there exists a largest index n + 1 < ¢ < 2n where a; # b; and a; > b;. This
implies that the largest index 1 < j < n such that a; # b; is j = @ —n. This means that a; = @; and b; = b; and

thus a; < b;. Therefore ajaz---a,, = 8 = pre,, (a) comes before by by---b, = 5’ = pre,, (") in colex order. O
Theorem 4.8 Forn >2andm > 1, let a1, aa, . . ., ayy, be the first m strings in revcolex(coN(n)). Then
U=UC(an,qa,...,an) is a universal cycle for S = U, suby, (o).

Proof. Observe that a1 = 01", so the first symbol in the sequence U is z = 0. Let S; = sub,(«a;) and

!/

a; = pr(a;) for 1 <i <m. Then Sy, Ss,...,S,, is a UC-partition of S with universal cycles o}, as, ..., o],

where x = 0. To prove that I/ is a universal cycle for S we show that the three conditions of Theorem 3.1 hold.
1. Clearly |a}] > n.
2. o/ has prefix 2", which must be maximal since all of the universal cycles are disjoint.

3. We must show that consecutive strings in ext,(a]),ext,(a5),. .., ext,(a,,) are suffix-related with
respect to (x,n). Notice that pre, (ext,(a})) = pre, (o;) for 1 < i < m. So we only need to show
that (pre,, (), pre,,(a;+1)) are suffix-related with respect to (x,n) for 1 < i < m. The proof is by
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contradiction. Let pre,(c;) = a1as---a, and pre, (1) = biba---by, for some 1 < i < m. Let j be the
smallest index of ;.1 such that b; # x. Suppose a;+1a;+2:--ay, # bj410j12:-by,. Then there exists some
largest ¢ > j such that a; # b;. Since pre,, (c;) comes before pre,,(«;+1) in colex order by Lemma 4.7,
a; < b;. However, since pre,, («;+1) is a co-necklace, then y = 0""1b;bi1---by, will also be a co-necklace.
But this means - comes between pre,, («; ) and pre,, (1) in colex order, which is a contradiction. So
Aj4+1Q542°Ap = bj+1bj+2"'bn, which implies suffn,j (pren(ai)) = suffn,j (pren(ai+1)). Thus the pair
of strings (pre,, (o), pre,, (c+1)) are suffix-related with respect to (x,n), which implies («;, ovi41) are
suffix-related with respect to (z,n). -

When m = |C(n)
equivalent to the de Bruijn sequence construction from [13]. In that paper an algorithm is provided that

, the above theorem yields the following corollary which describes a construction

generates the de Bruijn sequence in O(1)-amortized time per bit.

Corollary 4.9 Forn > 2, UC(revcolex(coN(n))) is a de Bruijn sequence for 3.

Example 10  Consider the set coN(6) listed in reverse colex order:

000000111111,000100111011,001100110011,000010111101,001010110101,000110111001.
By Corollary 4.9, the following is a de Bruijn sequence:
000000111111 -000100111011 - 0011 - 000010111101 - 001010110101 - 000110111001.

By Theorem 4.8, 000000111111 - 000100111011 - 0011, is a universal cycle for subg(000000111111) U
subg(000100111011) U subg(0011).

4.2.2 Rotations of Extended Co-necklaces in Lex Order

Let C(n) be the set of all a = ajagy---ag, such that a;,ia;19---asnar---a; € coN(n), where i is the largest
index of « such that a; # 0. For example, C(5) = {1111100000, 1011101000, 1001101100, 1010101010}.

Lemma 4.10 Let « = ajag---az, and B = biba---bay, be in C(n). If (pre,,(«),pre, (B)) are prefix-related
with respect to (x,n) where x € {0, 1}, then («, 3) are prefix-related with respect to (1 — x,n).

Proof. Assume that the pair of strings (pre, («),pre,(3)) are prefix-related with respect to (x,n). There
exists a smallest index 1 < ¢ < n such that z # a,—; and pre,,_, ;(pre,(a)) = pre,,_;_;(pre,(/5)). Since
a = pre, (a)pre, («) and § = pre,, (3)pre, (3), we have that the smallest index j such that 1 — = # ag,_; is
j =i and we already know from before than pre, , ;(«) = pre,,_,_1(3). So («, 3) are prefix-related with

respect to (1 —z,n). O
Theorem 4.11 For n > 2 and m > 1, let a1, a9,...,apy, be the last m strings in lex(C(n)). Then
U=UC(an,as,...,an) is a universal cycle for S = U, suby, (o).

Proof. Observe that a,,, = 10", so the last symbol in the sequence U is = 0. Let S; = sub,(«a;) and

!/

a) = pr(a;) for 1 <i <m. Then Sy, Ss,...,S,, is a UC-partition of S with universal cycles o}, as, ..., o],

where z = 0. To prove that I/ is a universal cycle for S we show that the three conditions of Corollary 3.2
hold.

11



1. Clearly |a,| > n.
2. a}, has suffix 2, which must be maximal since all of the universal cycles are disjoint.

3. We must show that consecutive strings in ext,(a}),ext,(ab),...,ext,(a),) are prefix-related with
respect to (z,n). Notice that pre,, (ext,(a;)) = pre,,(«a;) for 1 < ¢ < m. By Lemma 4.10 we only need
show that (pre,, (), pre,, (cvi+1)) are prefix-related with respect to (1-z,n) for 1 <4 < m. The proof is
by contradiction. Let pre,, (cv;) = ajaz---ay, and pre,,(a;+1) = biba---by, for some 1 < i < m. Let j be the
smallest index of pre, (o) such that a,,_; # 1 — x. Suppose aag:--an-j-1 # b1ba---by—j—1. Then there
exists some smallest s < n — j such that as # bs. Since pre,,(«;) comes before pre,, («;+1) in lex order,
then as < bs. Let y = ajag---as1"°. Clearly ~y is between pre,,(a;) and pre, (c+1) in lex order, and
0" ayjag---as is a co-necklace since 0" ° is the largest run of ones within the string, a contradiction.
So ajag--an-j-1 = biba--by—j-1, which implies pre,,_;_; (pre,,(«i)) = pre,_;_;(pre,(ci+1)). Thus
the pair of strings (pre,, (o), pre, (ci+1)) are prefix-related with respect to (1 — x,n), which implies

(i, vj41) are prefix-related with respect to (z,n).
i

When m = |C(n)|, the above theorem yields the following corollary which describes a new de Bruijn
sequence construction.

Corollary 4.12 Forn > 2, UC(lex(C(n))) is a de Bruijn sequence for ¥3.

Example 11  Consider the set C(6) listed in lex order:

100111011000,101011010100,101111010000,110011001100, 110111001000, 111111000000.
By Corollary 4.12, the following is a de Bruijn sequence:
100111011000 -101011010100-101111010000-1100-110111001000 - 111111000000.

By Theorem 4.11, 1100 - 110111001000 - 111111000000, is a universal cycle for subg(1100) U
subg(110111001000) U subg(111111000000).

S Conclusions and open problems

In this paper we presented conditions for when a listing of universal cycles can be concatenated together
to produce longer universal cycles and ultimately, de Bruijn sequences. By applying the conditions, we
generalized two previously known de Bruijn sequence concatenation-based constructions and discovered three
new ones. De Bruijn sequences from each of these five constructions for n = 6 and k = 2 are given below.

Construction de Bruijn Sequence for n =6,k =2
UC(lex(Necks(6))) 0000001000011000101000111001001011001101001111010101110110111111
UC(colex(Neckz(6))) | 0000001001000101010011010000110010110110001110101110011110111111

UC (revlex(R2(6))) 1111110111100111000110110100110000101110101100101010001001000000
UC(reveolex(coN(6))) | 0000001111110001001110110011000010111101001010110101000110111001
UC(lex(C(6))) 10011101100010101101010010111101000011001101110010001 11111000000

We conclude by posing some open problems.
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1. Can k-ary necklaces be generated in O(n)-amortized time per string in colex order? If so, then the de
Bruijn sequence UC(colex(Necky(n))) can be generated in O(1)-amortized time per symbol. There
is an efficient algorithm in the binary case [25].

2. Can the de Bruijn sequences UC(revlex(Ry(n))) and UC(lex(C(n))) be generated in O(1)-
amortized time per symbol?
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