Efficient Construction of Long Orientable
Sequences

Daniel Gabri¢
University of Guelph, Canada

Joe Sawada
University of Guelph, Canada

—— Abstract

An orientable sequence of order n is a cyclic binary sequence such that each length-n substring appears at
most once in either direction. Maximal length orientable sequences are known only for n < 7, and a trivial
upper bound on their length is 27! — 2L(n=1/2] Thjs paper presents the first efficient algorithm to construct

orientable sequences with asymptotically optimal length; more specifically, our algorithm constructs orientable
sequences via cycle-joining and a successor-rule approach requiring O(n) time per bit and O(n) space. This
answers a longstanding open question from Dai, Martin, Robshaw, Wild [Cryptography and Coding III (1993)].
Our sequences are applied to find new longest-known orientable sequences for n < 20.

2012 ACM Subiject Classification Mathematics of computing — Discrete mathematics

Keywords and phrases orientable sequence, de Bruijn sequence, concatenation tree, cycle-joining, universal
cycle

Digital Object Identifier 10.4230/LIPIcs...

© D. Gabrié, J. Sawada;
Bv licensed under Creative Commons License CC-BY 4.0

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2

Orientable sequences

1 Introduction

Orientable sequences were introduced by Dai, Martin, Robshaw, and Wild [7] with applications
related to robotic position sensing. In particular, consider an autonomous robot with limited sensors.
To determine its location on a cyclic track labeled with black and white squares, the robot scans a
window of n squares directly beneath it. For the position and orientation to be uniquely determined,
the track must designed with the property that each length n window can appear at most once in either
direction. A cyclic binary sequence (track) with such a property is called an orientable sequence of
order n (an OS(n)). By this definition, an orientable sequence does not contain a length-n substring
that is a palindrome.

Example 1 Consider S = 001011. In the forward direction, including the wraparound,
S contains the six 5-tuples 00101, 01011, 10110, 01100, 11001, and 10010; in the reverse
direction S contains 11010, 10100, 01001, 10011, 00110, and 01101. Since each substring is
unique, S is an OS(5) with length (period) six.

Orientable sequences do not exist for 1 < n < 5, and somewhat surprisingly, the maximum length
M, of an OS(n) is known only for n = 1,5, 6, 7. Since the number of palindromes of length n is
2L(+1)/2] "4 trivial upper bound on M,, is (2" — 2L(»+1)/21) /2 = on=1 _ ol(n=1)/2]

In addition to providing a tighter upper bound, Dai, Martin, Robshaw, and Wild [7] provide a
lower bound on M,, by demonstrating the existence of OS(n)s via cycle-joining with length L,,
asymptotic to their upper bound; see Section 1.1 for the explicit upper and lower bounds.. They
conclude by stating the following open problem relating to orientable sequences whose lengths
(periods) attain the lower bound.

We note that the lower bound on the maximum period was obtained using an existence
construction ... It is an open problem whether a more practical procedure exists for the
construction of orientable sequences that have this asymptotically optimal period.

Recently, some progress was made in this direction by Mitchell and Wild [20]. They apply
Lempel’s lift [18] to obtain an OS(n) recursively from an OS(n—1). This construction can generate
orientable sequences in O(1)-amortized time per bit; however, it requires exponential space, and
there is an exponential time delay before the first bit can be output. Furthermore, they state that
they “only partially answer the question, since the periods/lengths of the sequences produced are not
asymptotically optimal.”

Main result: By developing a parent rule to define a cycle-joining tree, we construct an OS(n)
of length L,, in O(n) time per bit using O(n) space.

Outline. In Section 1.1, we review the lower bound L,, and upper bound U,, from [7]. In Section 2,
we present necessary background definitions and notation, including a review of the cycle-joining
technique. In Section 3, we provide a parent rule for constructing a cycle-joining tree composed of
“reverse-disjoint” cycles. This leads to our O(n) time per bit construction of orientable sequences
of length L,,. In Section 4 we discuss the algorithmic techniques used to extend our constructed
orientable sequences to find longer ones for n < 20. We conclude in Section 5 with a summary of
our results and directions for future research. An implementation of our construction is available for
download at http://debruijnsequence.org/db/orientable.

http://debruijnsequence.org/db/orientable

XX:3

1.1 Boundson 1/,

Dai, Martin, Robshaw, and Wild [7] gave a lower bound L,, and an upper bound U,, on the maximum
length M,, of an OS(n).! Their lower bound L,, is the following, where y is the Mébius function:

1 n 1 i+l i
Y YR n LN (ol L gli
L,= |2 2§dl:u(n/d)d}l(d) . where H(d)—2§‘d:z(2 Pl olilen),

Their upper bound U, is the following:*

gn—1 %12% +%+% if n mod 4 = 0,

_ 2n—1_3§12:7‘1+%+% if n mod 4 =1,
n 2”—1_%25_1_’_%—1—% lfnm0d4:2’
2n71_%12"’;1+%+% if n mod 4 = 3.

These bounds are calculated in Table 1 for n up to 20. This table also illustrates the length R,, of
the OS(n) produced by the recursive construction by Mitchell and Wild [20], starting from an initial
orientable sequence of length 80 for n = 8. The column labeled L} indicates the longest known
orientable sequences we discovered by applying a combination of techniques (discussed in Section 4)

to our orientable sequences of length L,,.

n R, L, L Uy
5 - 0 6 6
6 - 6 16 17
7 - 14 36 40
8 80 48 92 96
9 161 126 174 206
10 322 300 416 443
11 645 682 844 918
12 1290 1530 1844 1908
13 2581 3276 3700 3882
14 5162 6916 7694 7905
15 10325 14520 15394 15948
16 20650 29808 31483 32192
17 41301 61200 63135 64662
18 82602 124368 128639 129911
19 | 165205 252434 257272 260386
20 | 330410 509220 519160 521964

Table 1 Lower bounds R,,, Ly, L}, and upper bound U,, for M,,.

1.2 Related work

Recall the problem of determining a robot’s position and orientation on a track. Suppose now that we
allow the track to be non-cyclic. That is, the beginning of the track and the end of the track are not

! These bounds correspond to L,, and U, respectively, as they appear in [7].

XX:4

Orientable sequences

connected. Then the corresponding sequence that allows one to determine orientation and position
is called an acyclic orientable sequence. One does not consider the substrings in the wraparound
for this variation of an orientable sequence. Note that one can always construct an acyclic OS(n)
from a cyclic OS(n) by taking the cyclic OS(n) and appending its prefix of length n—1 to the
end. See the paper by Burns and Mitchell [5] for more on acyclic orientable sequences, which they
call aperiodic 2-orientable window sequences. Alhakim et al. [2] generalize the recursive results of
Mitchell and Wild [20] to construct orientable sequences over an alphabet of arbitrary size k > 2; they
also generalize the upper bound, by Dai et al. [7], on the length of an orientable sequence. Rampersad
and Shallit [21] showed that for every alphabet size £ > 2 there is an infinite sequence such that
for every sufficiently long substring, the reversal of the substring does not appear in the sequence.
Fleischer and Shallit [11] later reproved the results of the previous paper using theorem-proving
software. See [0, 19] for more work on sequences avoiding reversals of substrings.

2 Preliminaries

Let B(n) denote the set of all length-n binary strings. Let « = ajas---a, € B(n) and 8 =
bibs - b, € B(m) for some m,n > 0. Throughout this paper, we assume 0 < 1 and use
lexicographic order when comparing two binary strings. More specifically, we say that o < 3 either
if a is a prefix of 8 or if a; < b; for the smallest i such that a; # b;. We say that « is a rotation
of § if m = n and there exist strings = and y such that « = zy and § = yx. The weight (density)
of a binary string is the number of 1s in the string. Let @; denote the complement of bit a;. Let a*
denote the reversal a,, - - - asa; of a; « is a palindrome if o = aft. For j>1,1let o denote J copies
of a concatenated together. If o = 47 for some non-empty string v and some j > 1, then « is said
to be periodic?; otherwise, « is said to be aperiodic (or primitive). For example, the English word
hotshots = (hots)? is periodic, but hots is aperiodic.

A necklace class is an equivalence class of strings under rotation; let [«] denote the set of strings
in o’s necklace class. We say « is a necklace if it is the lexicographically smallest string in [«]. Let
N(n) denote the set of length-n necklaces. A bracelet class is an equivalence class of strings under
rotation and reversal; let («) denote the set of strings in s bracelet class. Thus, (o) = [a] U [afF].
We say « is a bracelet if it is the lexicographically smallest string in («). Note that in general, a
bracelet is always a necklace, but a necklace need not be a bracelet. For example, the string 001011
is both a bracelet and a necklace, but the string 001101 is a necklace and is not a bracelet.

A necklace « is symmetric if it belongs to the same necklace class as ot ie., both o and off
belong to [«]. By this definition, a symmetric necklace is necessarily a bracelet. If a necklace or
bracelet is not symmetric, it is said to be asymmetric. Let A(n) denote the set of all asymmetric
bracelets of order n. Table 2 lists all 60 necklaces of length n = 9 partitioned into asymmetric
necklace pairs and symmetric necklaces. The asymmetric necklace pairs belong to the same bracelet
class, and the first string in each pair is an asymmetric bracelet. Thus, |A(9)| = 14. In general,
|A(n)]| is equal to the number of necklaces of length n» minus the number of bracelets of length n;
forn =6,7,...15, this sequence of values |A.(n)]| is given by 1, 2, 6, 14, 30, 62, 128, 252, 495, 968
and it corresponds to sequence A059076 in The On-Line Encyclopedia of Integer Sequences [25].
Asymmetric bracelets have been studied previously in the context of efficiently ranking/unranking
bracelets [1]. One can test whether a string is an asymmetric bracelet in linear time using linear space;
see Theorem 1.

2 Periodic strings are are also known as powers in the literature. The term periodic is sometimes used to denote a string
of the form (aﬂ)ia where « is non-empty, 3 is possibly empty, # > 1, and l(af) o] > 2. Under this definition, the

[aB]
word alfalfa is periodic, but bonobo is not.

https://oeis.org/A059076

Asymmetric necklace pairs Symmetric necklaces
000001011, 000001101 000000000 000100011 001110111
000010011 , 000011001 000000001 000101101 001111111
000010111, 000011101 000000011 000110011 010101011
000100101 , 000101001 000000101 000111111 010101111
000100111, 000111001 000000111 001001001 010111111
000101011, 000110101 000001001 001001111 011011011
000101111, 000111101 000001111 001010011 011011111
000110111, 000111011 000010001 001010101 011101111
001001011, 001001101 000010101 001011101 O11111111
001010111, 001110101 000011011 001100111 111111111
001011011 ,001101101 000011111 001101011
001011111 ,001111101
001101111,001111011
010110111, 010111011

Table 2 A listing of all 60 necklaces in N (9) partitioned into asymmetric necklace pairs and symmetric
necklaces. The first column of the asymmetric necklaces corresponds to the 14 asymmetric bracelets A(9).

» Theorem 1. One can determine whether a string o is in A(n) in O(n) time using O(n) space.

Proof. A string a will belong to A (n) if « is a necklace and the necklace of ['] is lexicographically
larger than «. These tests can be computed in O(n) time using O(n) space [3]. <

Lemma 2 is considered a folklore result in combinatorics on words; see Theorem 4 in [4] for a variant
of the lemma. We provide a short proof for the interested reader.

» Lemma 2. A necklace o is symmetric if and only if there exists palindromes 31 and 32 such that

a = [31Pa.

Proof. Suppose « is a symmetric necklace. By definition, it is equal to the necklace of [«?]. Thus,
there exist strings 31 and 32 such that o = 3182 = (B231)F = BFBE. Therefore, 31 = F and
B2 = B, which means 3; and S, are palindromes. Suppose there exists two palindromes (3; and S,

such that o = 31 Bo. Since 3; and 35 are symmetric, we have that ot = (8, 32)F = BEAE = 3,5.

So « belongs to the same necklace class as o and hence is symmetric. |

» Corollary 3. If o = 0°f is a symmetric bracelet such that the string 3 begins and ends with 1
and does not contain 0° as a substring, then (3 is a palindrome.

2.1 Cycle joining

Given S C B(n), a universal cycle U for S is a cyclic sequence of length |S| that contains each string
in S as a substring (exactly once). Thus, an orientable sequence is a universal cycle. If S = B(n)
then U is known as a de Bruijn sequence. Given a universal cycle U for S, a successor rule for U is a
function f : S — {0, 1} such that f(«) is the bit following « in U.

Cycle-joining is perhaps the most fundamental technique applied to construct universal cycles;
for some applications, see [8, 9, 10, 12, 14, 16, 17, 23, 24]. If S is closed under rotation, then it
can be partitioned into necklace classes (cycles); each cycle is disjoint. Let « = ajas - --a, and
& = @jag - - an; we say («, &) is a conjugate pair. Two disjoint cycles can be joined if they each
contain one string of a conjugate pair as a substring. This approach resembles Hierholzer’s algorithm
to construct an Euler cycle in an Eulerian graph [15].

XX:5

XX:6

Orientable sequences

Example 2 Consider disjoint subsets S; = [011111] U [001111] and S, = [010111] U [010101],
where n = 6. Then U; = 110011110111 is a universal cycle for S; and U = 01010111 is a universal
cycle for S,. Since (110111,010111) is a conjugate pair, U = 110011110111 - 01010111 is a universal
cycle for S; U Sa.

If all necklace cycles can be joined via conjugate pairs to form a cycle-joining tree, then the tree

defines a universal U for S with a corresponding successor rule (see Section 3 for an example).

For most universal cycle constructions, a corresponding cycle-joining tree can be defined by a

rather simple parent rule. For example, when S = B(n), the following are perhaps the simplest parent
rules that define how to construct cycle-joining trees with nodes corresponding to N(n) [13, 22].

Last-0: rooted at 1™ and the parent of every other node &« € N
First-1: rooted at 0" and the parent of every other node & € N
Last-1: rooted at 0" and the parent of every other node a € N

—~

n) is obtained by flipping the last 0.
n) is obtained by flipping the first 1.
n) is obtained by flipping the last 1.

D~

First-0: rooted at 1" and the parent of every other node a € IN

—

n) is obtained by flipping the first 0.

These rules induce the cycle-joining trees T, T, T3, T4 illustrated in Figure 1 for n = 6. Note that

for T'5 and Ty, the parent of a node « is obtained by first flipping the highlighted bit and then rotating
the string to its lexicographically least rotation to obtain a necklace. Each node « and its parent /3 are

joined by a conjugate pair, where the highlighted bit in « is the first bit in one of the conjugates. For

example, the nodes & = 011011 and 8 = 001011 in T4 from Figure 1 are joined by the conjugate
pair (110110, 010110).

Ty: Last 0 Ty: First 1
111111 000000
011111 000001
001111 010111 011011 001001 000101 000011
e
000111 001011 001101 010101 010101 001101 001011 000111
/NN N
000011 000101 001001 011011 010111 001111
|
000001 011111
|
000000 111111
Tj: Last 1 Ty: First 0
000000 111111
000001 011111
000011 000101 001001 011011 010111 001111
000111 001101 001011 010101 001101 010101 001011 000111
001111 011011 010111 001001 000101 000011
011111 000001
111111 000000

Figure 1 Cycle-joining trees for B(6) from simple parent rules.

3 An efficient cycle-joining construction of orientable sequences

Consider the set of asymmetric bracelets A(n) = {a1,as,...,a;}. Recall, that each symmetric
bracelet is a necklace. Let S(n) = [a1] U [ae] U - - - U [ay]. From [7], we have |S(n)| = L,,. By its
definition, there is no string & € S(n) such that o € S(n). Thus, a universal cycle for S(n) is an
OS&(n). For the rest of this section, we assume n > 8.

To construct a cycle-joining tree with nodes A (n), we apply a combination of three of the four
simple parent rules described in the previous section. First, we demonstrate that there is no such
parent rule, using at most two rules in combination. Observe, there are no necklaces in A (n) with
weight 0, 1, 2, n—2, n—1, or, n. Thus, 0"*1011 and 0510011 are both necklaces in A(n) with
minimal weight three. Similarly, 00101"~% and 0011015 are necklaces in A (n) with maximal
weight n—3. Therefore, when considering a parent rule for a cycle-joining tree with nodes A (n), the
rule must be able to flipaOtoal,oraltoad,i.e., if the rule applies a combination of the four rules
from Section 2.1, it must include one of First-0 or Last-0, and one of First-1 and Last-1.

Let « = ajas - - - a, denote a necklace in A (n); it must begin with 0 and end with 1. Then let

first1(«) be the necklace a; - - - a;_10a;41 - - - a,, where 7 is the index of the first 1 in «;
last1(«) be the necklace of [ajas - - - a,—10];

firstO(cr) be the necklace of [1ay - - - a,];

lastO(«x) be the necklace a; - - - a;_11a;41 - - - a,, where j is the index of the last 0 in c.

Note that first1(«) and lastO(«) are necklaces (easily observed by definition) obtained by flipping the
i-th and j-th bit in «, respectively; last1(«) and firstO(«) are the result of flipping a bit and rotating
the resulting string to obtain a necklace. The next example illustrates that no two of the previous four
parent rules can be applied in combination to obtain a spanning tree with nodes in A (n).

Example 3 Suppose p(«) is a parent rule that applies a combination of the four parent rules, first1,
last1, first0, last0, to construct a cycle-joining tree with nodes A.(n). The following examples are for
n = 10 but generalize to larger n. In both cases, we see that at least three of the parent rules must be
applied in p.

Suppose p does not use first0; it must apply last0. Consider three asymmetric bracelets in A (10):
a1 = 0000001011, az = 0000010111, and ars = 0011001011. Clearly, first1(c1), lastl(c:), and
lastO(c) are symmetric. Thus, a;; must be the root. Both first1(cz) and lastO(cz) are symmetric, so p
must apply last1. Note lastO(as) is symmetric and last1(as) = 0001100101 is not a bracelet, so p must
apply first1.

Suppose p does not use last0; it must apply first0. Consider three asymmetric bracelets in A (10):
B1 = 0000100011, B2 = 0001001111, and B3 = 0001100111. Clearly, first1(S:1), last1(81), and
first0(/31) are symmetric. Thus, 1 must be the root. Both first1(/32) and first0(/32) are symmetric, so p
must apply last1. Both last1(/83) and first0(83) are symmetric, so p must apply first1.

Let 7, denote the asymmetric bracelet 0"~#1011. We choose to use 7, to be the root of our cycle-
joining tree since it is the lexicographically smallest asymmetric bracelet of length n.

Parent rule for cycle-joining A (n): Let r,, be the root. Let o denote a non-root node in A (n). Then

firstl(«) if firstl(a) € A(n);
par(a) = { lastl(e) iffirstl(@) ¢ A(n) and lastl(a) € A(n); (1)
lastO(«) otherwise.

XX:7

XX:8

Orientable sequences

» Theorem 4. The parent rule par(«) in (1) induces a cycle-joining tree with nodes A (n) rooted
at ry,.

Let T,, denote the cycle-joining tree with nodes A (n) induced by the parent rule in (1); Figure 2
illustrates Tg. The proof of Theorem 4 relies on the following lemma.

000001011

000010111 000101011 001001011

A

000101111 001010111 000110111 000010011

O

001011111 001101111 010110111 000100111
A

001011011 000100101

Figure 2 The cycle-joining tree Ty. The black edges indicate that par(a) = first1(«); the blue edges
indicate that par(c) = last1(«); the red edges indicate that par(a) = lastO(«).

» Lemma 5. Let o # 1y, be an asymmetric bracelet in A(n). If neither first1(a) nor last1(«) are
in A(n), then the last 0 in « is at index n—2 or n—1, and both last0(«) and last1(last0(«)) are in
A(n).

Proof. Since « is an asymmetric bracelet, it must have the form o = 015017 where i,5 > 1
and 0 does not contain 0*! as a substring. Furthermore, 13017 < (18017)f, which implies
B0~ < (BO1I—1)E,

Suppose j > 2. Since last1(a) = 0*113017~! is not an asymmetric bracelet, we have 130171 >
(18017=1)%. Thus, B begins with 1. Since first1(a) = 0°F13017 is not an asymmetric bracelet,
Lemma 2 implies 3017 > (8017)%, contradicting the earlier observation that 8017~ < (501971)%,
Thus, the last 0 in « is at index n—2 or n—1.

Suppose j = 1 or ;7 = 2. Then the last 0 in & must be at position n—2 or n—1. Write a = z0y
where y = 1 or y = 11. Since « is a bracelet, it is straightforward to see that lastO(«) = z1y is
also a bracelet. If it is symmetric, Lemma 2 implies there exist palindromes /31 and 35 such that
lastO(a) = xly = (1 82. However, flipping the 1 in 21y that allows us to obtain « implies that « is
greater than or equal to the necklace in [« ®], contradicting the assumption that « is an asymmetric
bracelet. Thus, lastO(«) is an asymmetric bracelet.

Consider last1(lastO(a)) = 0i7*1317. Let 8 = bybg---b,,. Suppose that m = 0. Then
last1(lastO(a)) = 01119+ = lastO(a) = 01972, Since j = 1 or j = 2, we have that last0(a) =
0?1111 or lastO(ar) = 0°1111. Now « is the result of flipping one of the 1s in lastO(a) to a 0
and performing the appropriate rotation. But in every case, we end up with o being a symmetric
necklace, a contradiction. Thus, assume m > 1. Suppose § = 1. Then, « is not an asymmetric
bracelet, a contradiction. Suppose 5 = 0™. If j = 1, then « is symmetric, a contradiction; if
j = 2, then last1(last0(c)) = 0°F110™11 which is in A(n). For all other cases, 3 contains at least

one 1 and at least one 0; m > 2. Since 3 does not contain 0**! as a substring, by Lemma 2, we
must show that (i) 317~ < 1771 3% which implies 1817 < 175%1, recalling that (ii) 3017~! <
177108, Let £ be the largest index of /3 such that by, = 1. Then byy; ---b,, = 0™ ¢; note that
byy1 - - - by, is the empty string when £ = m. Suppose j = 1. From (ii), we have b; = 0 and
by---bp_110™f < 0™ “1by_; ---by. But this implies that by - - -b,,_s41 = 0™ *. Therefore,
we have 3 = 0™ 1o, s 0---b,, < 0™ “1by_1---b; = B, hence (i) is satisfied. Suppose
7 = 2. If by = 0, then (i) is satisfied. Otherwise by = 1 and from (ii) b = 0. From (ii), we

get that bz - - -by_110™ ¢ < 0™ ‘b,_; - - - bz. This inequality implies that bz - - - b, _p o = 0™ ¢,

Therefore, we have 31 = 10™ b, _y13---b,l < 10m by ---by = 1B%, hence (i) is
satisfied. Thus, last1(last0(«)) is an asymmetric bracelet. <

Proof of Theorem 4. Let o be an asymmetric bracelet in A(n) \ {r,}. We demonstrate that
the parent rule par from (1) induces a path from « to 7, i.e., there exists an integer j such that
par’/(a) = r,. Note that 7, is the lexicographically smallest asymmetric bracelet of order n. By
Lemma 5, par(a) € A(n). In the first two cases of the parent rule, par(«) is lexicographically
smaller than «. If the third case applies, let « = 0°15. From Lemma 5, last1(lastO(«)) is an
asymmetric bracelet. Thus, par(par(«)) is either first1(lastO(«)) or last1(lastO(«)); in each case
the resulting asymmetric bracelet has 05! as a prefix and is therefore lexicographically smaller than
«. Therefore, the parent rule induces a path from « to r,.

3.1 A successor rule

Each application of the parent rule par(«) in (1) corresponds to a conjugate pair. For instance,
consider the asymmetric bracelet &« = 000101111. The parent of « is obtained by flipping the last 1

to obtain 000101110 (see Figure 2). The corresponding conjugate pair is (100010111,000010111).

Let C(n) denote the set of all strings belonging to a conjugate pair in the cycle-joining tree T,,. Then
the following is a successor rule for an OS(n):

fla) = { a; ifaeC(n);

aj otherwise.

For example, if C(9) corresponds to the conjugate pairs to create the cycle-joining tree Ty shown in
Figure 2, then the corresponding universal cycle is:

000001011111001011011001011110011011110001011100101011100011011
101011011100001001110001001010001001100001011001001011000101011,

where the two underlined strings belong to the conjugate pair (100010111, 000010111). In general,
this rule requires exponential space to store the set C(n). However, in some cases, it is possible to
test whether a string is in C(n) without pre-computing and storing C(n). In our successor rule for
an OS(n), we use Theorem [to avoid pre-computing and storing C(n), thereby reducing the space
requirement from exponential in n to linear in n.

Successor-rule g to construct an OS(n) of length L,

Leta = ajas---a, € S(n) and let
B1 = 0" ‘lay - - - a; where i is the largest index of « such that a; = 1 (first 1);
B2 = agas - --an1 (last 1);

B3 = ajaji1---a,017 "2 where j is the smallest index of o such that a; = 0 and j > 1 (last 0).

XX:9

XX:10

Orientable sequences

Let
a; if 81 and first1(B1) are in A(n);
) & if B2 and last1(B2) are in A (n), and first1(S32) is not in A (n);
9(e) = a; if B3 and last0(fs) are in A (n), and neither first1(/33) nor last1(fs) are in A (n);
a; otherwise.

Starting with any string in & € S(n), we can repeatedly apply g(«) to obtain the next bit in a universal
cycle for S(n).

» Theorem 6. The function g is a successor rule that generates an OS(n) with length L,, for the
set S(n) in O(n)-time per bit using O(n) space.

Proof. Consider « = ajas - --a, € S(n). If a belongs to some conjugate pair in T,,, then it must
satisfy one of three possibilities stepping through the parent rule in 1:

Both 31 and first1(/3;) must be in A(n). Note, 1 is a rotation of o when a; = 1, where a;
corresponds to the first one in /3.

Both (35 and last1(82) must both be in A (n), but additionally, first1(33) can not be in A(n).
Note, 35 is a rotation of @ when a; = 1, where a; corresponds to the last one in 5.

Both 33 and last0((3) must both be in A (n), but additionally, both first1(33) and last1(S3) can
not be in A (n). Note, 3 is a rotation of @ when a; = 0, where a; corresponds to the last zero in

Ps.

Thus, g is a successor rule on S(n) that generates a cycle of length |S(n)| = L,,. By Theorem 1, one
can determine whether a string is in A(n) in O(n) time using O(n) space. Since there are a constant
number of tests required by each case of g, the corresponding OS(n) can be computed in O(n)-time
per bit using O(n) space.

<

4 Extending orientable sequences

The values from the column labeled L in Table 1 were found by extending an OS(n) of length
L,, constructed in the previous section. Given an OS(n), o1 - - - 0., the following approaches were
applied to find longer OS(n)s for n < 20:

1. For each index 4, apply a standard backtracking search to see whether o; - - - 0,01 - - - 0;_1 can be
extended to a longer OS(n). We followed several heuristics: (a) find a maximal length extension
for a given 4, and then attempt to extend starting from index ¢ + 1; (b) find a maximal length
extension over all ¢, then repeat; (c) find the “first” possible extension for a given ¢, and then repeat
for the next index ¢ + 1. In each case, we repeat until no extension can be found for any starting
index. This approach was fairly successful for even n, but found shorter extensions for n odd.
Steps (a) and (b) were only applied to n up to 14 before the depth of search became infeasible.

2. Refine the search in the previous step so the resulting OS(n) of length m’ has an odd number of
1s and at most one substring 0" 4. Then we can apply the recursive construction by Mitchell and
Wild [20] to generate an OS(n+ 1) with length 2m/ or 2m’ + 1. Then, starting from the sequences
generated by recursion, we again apply the exhaustive search to find minor extensions (the depth
of recursion is significantly reduced). This approach found significantly longer extensions to
obtain OS(n + 1)s when n + 1 is odd.

5

Future research directions

We present the first efficient algorithm to construct orientable sequences with asymptotically optimal
length; it is a successor-rule-based approach that requires O(n) time per bit and uses O(n) space.
This answers a long-standing open question by Dai, Martin, Robshaw, and Wild [7]. The full version
of this paper includes an application of the recent concatenation-tree framework [22] that leads to
constructions of our OS(n)s in O(1)-amortized time per bit. It also includes the results of applying
our OS(n)s to find some longer acyclic orientable sequences than reported in [5]. The binary results
have recently been extended to arbitrary sized alphabets like {C, G, A, T'}.

—— References

1

10

11

12

13

14

15

16

17

D. Adamson, V. V. Gusev, 1. Potapov, and A. Deligkas. Ranking bracelets in polynomial time. In
Pawel Gawrychowski and Tatiana Starikovskaya, editors, 32nd Annual Symposium on Combinatorial
Pattern Matching (CPM 2021), volume 191 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 4:1-4:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi :
10.4230/LIPIcs.CPM.2021.4.

A. Alhakim, C. J. Mitchell, J. Szmidt, and P. R. Wild. Orientable sequences over non-binary alphabets.
manuscript, 2023.

K. S. Booth. Lexicographically least circular substrings. Inform. Process. Lett., 10(4/5):240-242, 1980.
doi:10.1016/0020-0190(80)90149-0.

S. Brlek, S. Hamel, M. Nivat, and C. Reutenauer. On the palindromic complexity of infinite words.
Internat. J. Found. Comp. Sci., 15(02):293-306, 2004. doi:10.1142/5012905410400242X.

J. Burns and C. J. Mitchell. Position sensing coding schemes. In Cryptography and Coding Il (M.J.Ganley,
ed.), pages 31-66. Oxford University Press, 1993.

J. Currie and P. Lafrance. Avoidability index for binary patterns with reversal. Electronic J. Combinatorics,
23((1) P1.36):1-14, 2016. doi:10.37236/5483.

Z. D. Dai, K. M. Martin, M. J. B. Robshaw, and P. R. Wild. Orientable sequences. In Cryptography and
Coding 11l (M.J.Ganley, ed.), pages 97-115. Oxford University Press, 1993.

T. Etzion. An algorithm for generating shift-register cycles. Theoret. Comput. Sci., 44(2):209-224, 1986.
doi1:10.1016/0304-3975(86)90118-0.

T. Etzion. Self-dual sequences. J. Combin. Theory Ser. A, 44(2):288-298, 1987. doi:10.1016/
0097-3165(87)90035-5.

T. Etzion and A. Lempel. Algorithms for the generation of full-length shift-register sequences. /IEEE
Trans. Inform. Theory, 30(3):480-484, 1984. doi:10.1109/TIT.1984.10569109.

L. Fleischer and J. O. Shallit. Words that avoid reversed factors, revisited. Arxiv preprint arXiv:1911.11704
[cs.FL], available at http://arxiv.org/abs/1911.11704,2019.

H. Fredricksen. A survey of full length nonlinear shift register cycle algorithms. SIAM Review, 24(2):195—
221,1982. doi:10.1137/1024041.

D. Gabri¢, J. Sawada, A. Williams, and D. Wong. A framework for constructing de Bruijn sequences via
simple successor rules. Discrete Math., 241(11):2977-2987,2018. doi:10.1016/j.disc.2018.
07.010.

D. Gabrié, J. Sawada, A. Williams, and D. Wong. A successor rule framework for constructing k-
ary de Bruijn sequences and universal cycles. [EEE Trans. Inform. Theory, 66(1):679—-687, 2020.
doi:10.1109/TIT.2019.2928292.

C. Hierholzer. Ueber die Moglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu
umfahren. Math. Annalen, 6:30-32, 1873. do1:10.1007/BF01442866.

Y. Huang. A new algorithm for the generation of binary de Bruijn sequences. J. Algorithms, 11(1):44-51,
1990. doi1:10.1016/0196-6774(90) 90028-D.

C.J. A. Jansen, W. G. Franx, and D. E. Boekee. An efficient algorithm for the generation of DeBruijn
cycles. IEEE Trans. Inform. Theory, 37(5):1475-1478, 1991. doi1:10.1109/18.133272.

XX:11

https://doi.org/10.4230/LIPIcs.CPM.2021.4
https://doi.org/10.4230/LIPIcs.CPM.2021.4
https://doi.org/10.1016/0020-0190(80)90149-0
https://doi.org/10.1142/S012905410400242X
https://doi.org/10.37236/5483
https://doi.org/10.1016/0304-3975(86)90118-0
https://doi.org/10.1016/0097-3165(87)90035-5
https://doi.org/10.1016/0097-3165(87)90035-5
https://doi.org/10.1109/TIT.1984.1056919
http://arxiv.org/abs/1911.11704
https://doi.org/10.1137/1024041
https://doi.org/10.1016/j.disc.2018.07.010
https://doi.org/10.1016/j.disc.2018.07.010
https://doi.org/10.1109/TIT.2019.2928292
https://doi.org/10.1007/BF01442866
https://doi.org/10.1016/0196-6774(90)90028-D
https://doi.org/10.1109/18.133272

XX:12

Orientable sequences

18

19

20

21

22

23

24

25

A. Lempel. On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift
registers. IEEE Trans. Comput., C-19(12):1204-1209, 1970. do1:10.1109/T-C.1970.222859.
R. Mercas. On the aperiodic avoidability of binary patterns with variables and reversals. Theoret. Comput.
Sci., 682:180-189, 2017. doi1:10.1016/7.tcs.2016.12.022.

C.J. Mitchell and P. R. Wild. Constructing orientable sequences. IEEE Trans. Inform. Theory, 68(7):4782—
4789, 2022. doi:10.1109/TIT.2022.3158645.

N. Rampersad and J. O. Shallit. Words that avoid reversed subwords. J. Combin. Math. Combin. Comput.,
54:157-164, 2005.

J. Sawada, J. Sears, A. Trautrim, and A. Williams. Concatenation trees: A framework for efficient
universal cycle and de Bruijn sequence constructions. Arxiv preprint arXiv:2308.12405 [math.CO],
available at https://arxiv.org/abs/2308.12405, 2023.

J. Sawada and A. Williams. Constructing the first (and coolest) fixed-content universal cycle. Algorithmica,
85(6):1754-1785,2023. doi:10.1007/s00453-022-01047~-2.

J. Sawada and D. Wong. Efficient universal cycle constructions for weak orders. Discrete Math.,
343(10):112022, 2020. do1:10.1016/7.disc.2020.112022.

N. J. A. Sloane et al. OEIS Foundation Inc. (2024), The On-Line Encyclopedia of Integer Sequences,
https://oeis.orgq.

https://doi.org/10.1109/T-C.1970.222859
https://doi.org/10.1016/j.tcs.2016.12.022
https://doi.org/10.1109/TIT.2022.3158645
https://arxiv.org/abs/2308.12405
https://doi.org/10.1007/s00453-022-01047-2
https://doi.org/10.1016/j.disc.2020.112022
https://oeis.org

	1 Introduction
	1.1 Bounds on Mn
	1.2 Related work

	2 Preliminaries
	2.1 Cycle joining

	3 An efficient cycle-joining construction of orientable sequences
	3.1 A successor rule

	4 Extending orientable sequences
	5 Future research directions

