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CIS1910 Discrete Structures in Computing (I) 
Winter 2019, Solutions to Assignment 4 

 
 
 
 
 
 
 
 
PART A.  
 
 
1.  (a) Consider two elements x1 and x2 of A such that f(x1)=f(x2). Since (x1,f(x1)) and (x2,f(x2))= 
(x2,f(x1)) belong to F, the pairs (f(x1),x1) and (f(x1),x2) belong to F−1. If f is injective then the 
relation f−1 is a function, which implies that x1=x2.  (b) Consider two pairs (y,x1) and (y,x2) of F−1. 
Then (x1,y) and (x2,y) belong to F, which means that y=f(x1)=f(x2), which implies that x1=x2 
according to the premise. We have shown that f−1 is a function, i.e., f is injective. 
 
 
2.  (a) Since f is a bijection, it is a function, and that function is injective, which means that f−1 is 
a function from B to A.  (b) Consider an element y of B. Since f is surjective, there is an element 
x of A such that (x,y)∈F. Therefore, (y,x)∈F−1, which means that y has an image under f−1, i.e., y 
belongs to the domain of definition of f−1. We have shown that f−1 is total.  (c) Consider an 
element x of A. Since f is total, there is an element y of B such that (x,y)∈F. Therefore, 
(y,x)∈F−1, which means that x has a preimage under f−1, i.e., x belongs to the range of f−1. The 
function f−1 is surjective.  (d) Since (F−1)−1 is equal to F, the relation (f−1)−1 is equal to f, which we 
know is a function. We have shown that f−1 is injective.  (e) In the end, f−1 is bijective.  (f) 
Consider an element x of A. Since f is total, it is defined at x, and the pair (x,f(x)) belongs to F. 
Therefore, (f(x),x)∈F−1, which means that f−1(f(x))=x. 
 
 
3.  (a) Consider an element x of A. Since f is total, x has an image f(x) under f, and that image 
belongs to B. Moreover, since g is total, f(x) has an image g(f(x))=h(x) under g, and that image 
belongs to C. We have shown that h is total.  (b) Let z be an element of C. Since g is surjective, z 
has a preimage y under g, i.e., g(y)=z. Moreover, since f is surjective, y has a preimage x under f, 
i.e., f(x)=y. In the end, g(f(x))=h(x)=z, i.e., x is a preimage of z under h. The function h is 
surjective.  (c) Let x1 and x2 be two elements of A such that h(x1)=h(x2), i.e., g(f(x1))=g(f(x2)). 
Since g is injective, f(x1)=f(x2) (according to A1a), and since f is injective, x1=x2 (A1a again). 
Therefore, h is injective (according to A1b).  (d) In the end, h is a bijection.  
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PART B.  
 
 
See Lab 1 Part B and Lab 7 Part B for the use of biconditionals.  
 
 
4.  (a) The domain of definition of f is the set of all the elements x of the domain R 
such that 1/x belongs to the codomain R. It is {x∈R | 1/x∈R} = {x∈R | x≠0} = R*. 
 
(b) If y=0 then the solution set is ∅ . 
If y≠0 we have 1/x=y ↔ x=1/y and the solution set is {1/y}. 
 
(c) According to (b), any element y of the codomain of f has a preimage under f, except 0. 
The range of f is, therefore, R*.  
 
(d) f is NOT total, since its domain and domain of definition are not equal; see (a). f is NOT 
surjective, since its codomain and range are not equal; see (c). Now, consider an element y of the 
codomain of f and two elements x0 and x1 of the domain. According to (b), y has at most one 
preimage under f: the number 1/y. Therefore, if (y,x0) and (y,x1) belong to the graph of the 
relation f−1, then x0=x1. This means that f−1 is actually a function, and, therefore, f is injective. 
Finally, f is NOT bijective, since it is not total and not surjective. 
 
(e) Let I=R* and J=R*. Like f, the function f(I,J) is injective. Contrary to f, however, it is total 
(since its domain and domain of definition are equal) and surjective (since its codomain and 
range are equal). In the end, f(I,J) is bijective and its inverse is the function y  !  1/y from J to I. In 
other words (since we can choose the symbol x there instead of y), we have f(I,J)

−1 = f(I,J). 
 
 
5.  (a) R 
 
(b) Let x and y be two real numbers. If y<0 then the solution set is ∅ . 
If y=0 then the solution set is {0}. 
If y>0 we have  x2=y ↔ (x=−√y ∨ x=√y)  and the solution set is {−√y,√y}. 
 
(c) According to (b), the range of f is [0,+∞[.  
 
(d) f is total. f is NOT surjective and, therefore, NOT bijective. f is NOT injective either: for 
example, according to (b), the preimages of 1 under f are −1 and 1; since both (1,−1) and (1,1) 
belong to its graph, the relation f−1 is not a function. 
 
(e) If I=J=[0,+∞[ then the function f(I,J) is bijective and its inverse is: 
 

 [0,+∞[ →  [0,+∞[   
    x  !  √x         
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6.  (a) [0,+∞[ 
 

(b) If y<0 then the solution set is ∅ . 
If y≥0 we have  √x=y ↔ x=y2  and the solution set is {y2}. 
 

(c) According to (b), the range of f is [0,+∞[.  
 

(d) f is NOT total, NOT surjective, NOT bijective, but it is injective.  
 

(e) If I=J=[0,+∞[ then the function f(I,J) is bijective and its inverse is: 
 

 [0,+∞[ →  [0,+∞[   
    x  !  x2         

 

 
7.  (a) R 
 

(b) If y<0 then the solution set is ∅ . 
If y=0 then the solution set is {0}. 
If y>0 we have |x|=y ↔ (x=y ∨ x=−y) and the solution set is {−y,y}. 
 

(c) According to (b), the range of f is [0,+∞[.  
 

(d) f is total, but it is NOT surjective, NOT injective, NOT bijective. 
 

(e) If I=J=[0,+∞[ then the function f(I,J) is bijective and its inverse is itself: 
 

 [0,+∞[ →  [0,+∞[   
    x  !  x         

 

 
8.  (a) The domain of definition of f is the set of all the elements x 
of the domain R such that 1/√(x+1) belongs to the codomain R.  
It is {x∈R | 1/√(x+1)∈R} = {x∈R | x+1>0} = ]−1,+∞[. 
 

(b) If y≤0 then the solution set is ∅ . If y>0 then 
 

     1/√(x+1)=y 
↔ √(x+1)=1/y 
↔ x+1=1/y2 
↔ x=−1+1/y2 
 

and the solution set is {−1+1/y2}. 
 

(c) The range of f is R+.  
 

(d) f is NOT total, NOT surjective, NOT bijective, but it is injective. 
 

(e) Let I=]−1,+∞[ and J=]0,+∞[. The function f(I,J) is bijective and its inverse is: 
 

]−1,+∞[ →  ]0,+∞[  
x  !  −1+1/x2         
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PART C. 
 
 

9.  x+y=0 
• Since 1+1≠0, we have 1ℜ1. 
      The proposition ∀x, (xℜx) is not true. 
      The relation is NOT reflexive. 
• Consider any real numbers x and y. Assume xℜy. Then x+y=0, i.e., y+x=0, i.e., yℜx. 
      Therefore, the proposition ∀x, ∀y, (xℜy→yℜx) is true. 
      The relation is symmetric. 
• Since 1+(−1)=(−1)+1=0, we have 1ℜ−1 and −1ℜ1. 
      The proposition ∀x, ∀y, ((xℜy∧yℜx)→x=y) is not true. 
      The relation is NOT antisymmetric. 
• We have 1ℜ−1 and −1ℜ1, but 1ℜ1. 
      The proposition ∀x, ∀y, ∀z, ((xℜy∧yℜz)→xℜz) is not true. 
      The relation is NOT transitive. 
 
 

10.  x−y∈Q 
• Consider any real number x. Since x−x, i.e., 0, is a rational number, we have xℜx. 
      The relation is reflexive. 
• Consider any real numbers x and y. Assume xℜy. Then x−y is a rational number (i.e., there 

exist two integers p and q such that x−y=p/q). Therefore, y−x is a rational number (we have 
y−x=P/Q with P=−p and Q=q). In other words, yℜx. The relation is symmetric. 

• Since 1−0 and 0−1 are rational numbers, we have 1ℜ0 and 0ℜ1. 
      The relation is NOT antisymmetric. 
• Consider any real numbers x, y and z. Assume xℜy and yℜz. Then x−y and y−z are rational 

numbers (say, p/q and p’/q’). Therefore, x−z=(x−y)+(y−z) is a rational number too (we have 
x−z=(p/q)+(p’/q’)=(pq’+p’q)/(pq)=P/Q with P=pq’+p’q and Q=pq). In other words, xℜz. 

      The relation is transitive. 
 
 

11.  x=2y 
• 1ℜ1. The relation is NOT reflexive. 
• 2ℜ1 but 1ℜ2. The relation is NOT symmetric. 
• Consider any real numbers x and y. Assume xℜy and yℜx. Then x=2y and y=2x. Therefore, 

x=2(2x)=4x and y=2(2y)=4y, i.e., x=0 and y=0. Hence, x=y. The relation is antisymmetric. 
• We have 4ℜ2 and 2ℜ1, but 4ℜ1. The relation is NOT transitive. 
 
 

12.  xy≥0 
• Consider any real number x. Since x2≥0, we have xℜx. The relation is reflexive. 
• Consider any real numbers x and y. Assume xℜy. Then xy≥0, i.e., yx≥0, i.e., yℜx. 
      The relation is symmetric. 
• We have 1ℜ2 and 2ℜ1. The relation is NOT antisymmetric. 
• We have 1ℜ0 and 0ℜ−1, but 1ℜ−1. The relation is NOT transitive. 
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13.  x=1 
• Since 0≠1, we have 0ℜ0. The relation is NOT reflexive. 
• 1ℜ2 (since 1=1). However, 2ℜ1 (since 2≠1). The relation is NOT symmetric. 
• Consider any real numbers x and y. Assume xℜy and yℜx. Then x=1 and y=1. 
      Therefore, x=y. The relation is antisymmetric. 
• Consider any real numbers x, y and z. Assume xℜy and yℜz. Then x=1 (and y=1). 
      Therefore, xℜz. The relation is transitive. 
 
 
 
 
PART D. 
 
 
14.  Let I, J and K be l-bit greyscale images of height H and width W. 
 
(a) Consider the function  id : 0..2l−1 → 0..2l−1  

             u  !  u  
id is a bijection, i.e., it is an element of G. 
Moreover: ∀(x,y)∈(0..H−1)×(0..W−1), I(x,y) = id(I(x,y)) 
which means that I R I. We have shown that R is reflexive. 
 
(b) Assume I R J. Then, there exists an element g of G such that for any (x,y) 
of (0..H−1)×(0..W−1) we have J(x,y) = g(I(x,y)). We know from A2 that g−1 is a bijection, 
i.e., it belongs to G. Moreover, according to A2, we have g−1(J(x,y)) = g−1(g(I(x,y))) = I(x,y), 
which means that J R I. We have shown that R is symmetric.  
 
(c) Assume I R J and J R K. Then, there exist two elements g and h of G such that for any 
(x,y) of (0..H−1)×(0..W−1) we have J(x,y) = g(I(x,y)) and K(x,y)=h(J(x,y)), and, therefore, 
K(x,y)=h(g(I(x,y))). Consider the function  k : 0..2l−1 → 0..2l−1  

             u  !  h(g(u))  
We know from A3 that k is a bijection, i.e., it belongs to G. In the end, we have found an element 
of G, the bijection k, such that for any (x,y) of (0..H−1)×(0..W−1) we have K(x,y)=k(I(x,y)). This 
means that I R K. We have shown that R is transitive.  
 
(d) In the end, R is an equivalence relation.  
 
 
15.  (a) Consider an image I whose range is {0}. Assume the image J is related to I. 
Then, there exists a bijection g of G such that for any (x,y) of (0..H−1)×(0..W−1) we 
have J(x,y)=g(I(x,y))=g(0). Since there are 2l ways to choose g(0), there are 2l ways 
to choose J. The equivalence class of I is of cardinality 2l. 
 
(b) Consider an image I whose range is {0,1}. Assume the image J is related to I. 
Then, there exists a bijection g of G such that for any (x,y) of (0..H−1)×(0..W−1) 
we have either J(x,y)=g(I(x,y))=g(0) or J(x,y)=g(I(x,y))=g(1). Since there are 2l  
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ways to choose g(0) and 2l−1 ways left to choose g(1), there are 2l ×(2l−1) ways 
to choose J. The equivalence class of I is of cardinality 2l ×(2l−1). 
 
(c) Consider an image I whose range is 0..2l−1. Assume the image J is related to I. 
Using the same reasoning as above, we can show that there are 2l ×(2l−1)×…×1 
ways to choose J. The equivalence class of I is of cardinality (2l )! 
 
 
16.  (a) A random value (out of 2l ) was chosen for g(0), a random value 
(out of the 2l−1 values left) was chosen for g(1), etc.  (b) g : u  !  (2l−1)−u 
 
 


