

CIS1910 Discrete Structures in Computing (I) Winter 2019, Lab 2 Notes

Here are recommended practice exercises. Many have been covered in Lab 2.

A. INEQUALITIES

1. Let *a*, *b* and *c* be real numbers. Complete and make it come true.

$\sqrt{a} \leq \sqrt{b}$ iff $a \leq b$	(41)
$a^2 \leq b$ iff $a \leq \sqrt{b}$	(42)
$a^2 \ge b \text{ iff } a \ge \sqrt{b} \dots$	(43)
$\sqrt{a \le b}$ iff $a \le b^2$	(44)
$\sqrt{a \ge b}$ iff $a \ge b^2$	(45)
$a \leq b \text{ iff } a + c \leq b + c \dots$	(46)
(<i>a</i> ≤ <i>b</i>) iff (<i>ac</i> ≤ <i>bc</i>)	(47)
(<i>a</i> ≤ <i>b</i>) iff (<i>ac</i> ≥ <i>bc</i>)	(48)

2. *Solve over* \mathbb{R} the following inequalities in x, i.e., for each inequality, find the set of all the elements x of \mathbb{R} such that the inequality holds (this set is called the *solution set*).

2.1.	$1-2x \le 3$	
2.2.	$\sqrt{4x+3} \le \sqrt{7x+9}$	
2.3.	$(x+2)^2 \le 9$	
2.4.	$\sqrt{3x+7} \ge x+1$	(<i>hint</i> : $(x-3)(x+2)=x^2-x-6$)

B. FUNCTIONS

1. What are all the functions from $\{x,y\}$ to $\{0,1\}$? Write each function as a triple and represent it by an arrow diagram; specify the domain, codomain, domain of definition, range and graph.

- 2. Consider the function $f: U \to V$ $x \mapsto \sqrt{2x+1}$ where U and V are two subsets of \mathbb{R} .
- **2.1.** What is the domain of definition of f if $U=\mathbb{R}$ and $V=\mathbb{R}$?
- **2.2.** What is the domain of definition of f if U=[-1,1] and $V=\mathbb{R}$?
- **2.3.** What is the domain of definition of f if $U=\mathbb{R}$ and V=[-1,1]?
- 3. Consider the function $f: [0,1] \rightarrow \mathbb{R}$ $x \mapsto (4x-3)^2$
- **3.1.** Does –1 belong to the range of f? What about 1, 4, 16?
- **3.2.** What is the range of f?

C. NUMERAL SYSTEMS

- 1. What are the base 10 expansions of $(10014)_{16}$, $(DF7)_{16}$ and $(9A5)_{11}$?
- **2.** What are the base 10 expansions of (21331)₄, (110110)₂ and (12021)₃?
- **3.** What is the base 4 expansion of 637? What is the base 2 expansion of 100? What is its base 3 expansion?
- 4. Find the base 8 expansion of $(11110)_2$ and the base 16 expansion of $(11110)_2$.
- 5. Find the base 5 expansion of $(1A7)_{16}$ and the base 8 expansion of $(1A7)_{16}$.
- 6. Calculate the base 8 expansion of $(751)_8+(743)_8$ and the base 2 expansion of $(1110)_2\times(101)_2$.