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CIS1910 Discrete Structures in Computing (I) 
Winter 2019, Lab 4 Notes 

 
 

Here are recommended practice exercises. Many have been covered in Lab 4. 
Note that the examples and exercises listed in blue come from the following textbook: 
“Discrete Mathematics and Its Applications,” by Rosen, Mc Graw Hill, 7th Edition 

 
 
 
 
 
 
A.  BOOLEAN ALGEBRA AND CIRCUIT DESIGN 
 
 
Consider the Boolean algebra ({0,1},+,⋅,

_
), as seen in class (slide 2.11). The Boolean operations 

+, ⋅ and 
_
 can then be defined by the tables below. In this lab, the symbol + will read “or” instead 

of “plus”, the symbol ⋅ will read “and” instead of “dot”, and the symbol 
_
 will read “not” instead 

of “bar”. Moreover, we will give ⋅ a higher precedence than +.  
 

   
 

This Boolean algebra is at the basis of circuit design. A computer is made up of a number of 
circuits. The basic elements of circuits are gates. Typically, there are one or more inputs to a gate, 
and only one output. Gate inputs are driven by voltages having two nominal values (e.g., 0V and 
5V); these values are represented by the symbols 0 and 1 respectively. The output of a gate also 
provides two nominal values of voltage only. Here are common gates: 
 

       
 OR gate AND gate INVERTER 
 
 

⋅ 

⋅ 
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1.  Consider the circuit below: 
 

 
 
It can also be represented as follows: 
 

 
 
What is the output to this circuit? 
 
 
2.  Exercises 1, 3 and 5 from Section 12.3 of the textbook 
 
 
3.  (a) Example 1 p. 823   
(b) Draw the tables that correspond to these circuits. 
 
 
4.  (a) Construct the circuit that produces the output x⋅y+x⋅z+y⋅z. 
(b) Draw the table that corresponds to this circuit.   
(c) Example 2 p. 825 
 
 
5.  Example 3 p. 825 
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6.  Consider the Boolean functions F and G defined by the table below. 
 

 
 
(a) Show that F(x,y,z) can be expressed as a sum of minterms of degree 3. 
This sum is called the sum-of-products expansion of F. 
 
(b) Construct the circuit that produces the output F(x,y,z). 
 
(c) Note that the sum-of-products expansion of F involves 6 operations: 
1 sum, 4 products, 1 complementation. Minimize F, i.e., find an expression 
for F(x,y,z) that involves a minimum number of operations.  
 
(d) Construct the circuit that produces the output x⋅z. 
 
(e) Show that G(x,y,z) can be expressed as a product of maxterms of degree 3 
(this product is called the product-of-sums expansion of G), and minimize G. 
 
 
 
7.  (a) For any positive integer n and for any Boolean function F of degree n, it is possible to find 
an expression for F(x1,x2,…,xn) that involves no other Boolean operations than those in the set 
{+,⋅,

_
}. Explain. We say that {+,⋅,

_
} is functionally complete.   

 
(b) Let ↓ be the Boolean operation defined by x↓y = x+y, for any elements x and y of B. 
This operation is called the NOR operation. Show that for any x and y of B we have:  
x=x↓x  and  x⋅y=(x↓x)↓(y↓y)  and  x+y=(x↓y)↓(x↓y). 
 
(c) Is {↓} functionally complete? 
 
(d) The Boolean expression x⋅ y+z involves three distinct Boolean operations: +, ⋅ and −. 
Find an equivalent expression that involves ↓ only.  
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B.  PROPOSITIONAL LOGIC 
 
 
A propositional expression is a finite sequence of symbols. The accepted symbols are T (which 
denotes a proposition that is true), F (which denotes a proposition that is false), p, q, r, etc. (which 
denote propositional variables), ¬, ∧, ∨, →, ↔, etc. (which denote propositional operations) and 
brackets. The sequence should make sense, i.e., it should become a proposition once specific 
propositions are considered. For example, T, p, ¬q, p∨F, q∧¬p, p→[(¬q)∨r] are propositional 
expressions, while ∨pq, p∧∨q¬ and )p∨(q] are not. Note that a truth table can be attached to any 
propositional expression.  
 
 
1.  Section 1.1 of the textbook 
 
(a) Examples 1, 2, 3, 4, 5, 6 
 
(b) Because conditional statements play such an essential role in mathematical reasoning, 
a variety of terminology is used to express p→q. For example: 
 

“if p, then q”  “q if p”       “p is sufficient for q” 
“if p, q”  “q when p”      “a sufficient condition for q is p”  
“p implies q”  “q unless not p”     “q is necessary for p” 
“p only if q”  “q follows from p”     “a necessary condition for p is q” 

 
Examples 7 and 10 
 
 
2.  Section 1.2 
 
(a) Examples 1 and 2 
 
(b) Translating sentences in natural language (such as English) into propositional expressions is 
an essential part of hardware and software system specification. System and software engineers 
take requirements in natural language and produce precise and unambiguous specifications that 
can be used as the basis for system development.  
 
Example 3 
 


