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Abstract. A directional relationship (e.g., right, above) to a reference object can 

be modeled by a directional map – an image where the value of each point 

represents how well the relationship holds between the point and the object. As 

we showed in previous work, such a map can be derived from a force field 

created by the object (which is seen as a physical entity). This force field-based 

model, defined by equations in the continuous domain, shows unique 

characteristics. However, the approximation algorithms that were proposed in 

the case of 2-D raster data lack efficiency and accuracy. We introduce here new 

algorithms that correct this flaw, and we illustrate the potential of the force 

field-based approach through an application to scene matching. 

Keywords: spatial relationships, force fields, directional maps, scene matching. 

1 Introduction 

Research on the modeling of spatial relationships raises two questions: (a) How to 

identify the relationships between two given objects [1,2]? (b) How to identify, in a 

scene, the object that best satisfies a given relationship to a reference object [3]? The 

second question defines an object localization task. One theory supported by 

cognitive experiments is that people accomplish this task by parsing space around the 

reference object into good regions (where the object being sought is more likely to 

be), acceptable and unacceptable regions (where the object being sought cannot be) 

[4,5]. These regions form a so-called spatial template [5,6], which assigns each point 

in space a value between 0 (unacceptable region) and 1 (good region).  

When focusing on directional (also called projective [7] or cardinal [8]) 

relationships (e.g., front, south, above), spatial templates can be referred to as 

directional maps [9] (or as fuzzy landscapes [3]). A directional map is an image where 

the value of each point reflects the degree to which the point satisfies some directional 

relationship to a reference object.  

The map as defined in [3] takes the object’s shape into account and depends 

essentially on angular deviation (two characteristics supported by cognitive studies). 

We call it the standard map, S
δR

, where δ represents the directional relationship and R 

the reference object. Two algorithms have been designed for fast calculation of S
δR

: 
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the first one is based on a propagation technique [3] and the second one on 

partitioning the image into parallel lines [10].  

Matsakis et al. [9] proposed another model (Section 2), which relies on the idea of 

considering the reference object as a physical entity that creates a force field. All 

directional maps induced by the object can then be derived from the force field. 

Compared with standard maps, force field-based maps better cope with outliers, 

elongated objects and concavities [9]. However, the algorithm for force field 

computation described in [9] is slow. Moreover, although the directional maps 

induced by the object can be derived from the force field in negligible time, their 

calculation lacks accuracy. Indeed, the maps depend on a supremum that can only be 

estimated, and which, in [9], is often greatly overestimated. We introduce here new 

algorithms that correct these flaws (Section 3) and we illustrate the potential of the 

force field-based approach through an application to scene matching (Section 4). Note 

that directional maps can be used for many tasks, including spatial reasoning, object 

localization and identification, structural and model-based pattern recognition 

[11,12,13,14].  

2 Force Field-based Maps 

The notations used in the rest of the paper are as follows. Z+ is the set of positive 

integers. P is the Euclidean plane. For any points p and q of P, pq is the vector from p 

to q with norm |pq|. δ
�

 is the unit vector pointing at direction δ∈[0,2π). The radian 

measure in [0,π] of the angle between two nonzero vectors u
�

and v
�

 is denoted by 

∠( u
�

, v
�

). An object R is a subset of P, bounded, closed, with area |R|≠0. We have 

R(p)=1 if p∈R and R(p)=0 if p∉R.  

We assume that point q exerts on point p a force of magnitude 1/|pq|
r
 in the 

direction of pq, where r is a given real number. The force ( )R

r
qΦ that q exerts on R is 

the integration of the forces that q exerts on all the points of R: 

1

( )
( ) d d

| || | | |

R

r r rp p R

R p pq pq
q p p

pqpq pq
+∈ ∈

Φ = =∫ ∫P
. (1) 

R

r
Φ is called the force field created by R [9]. Note that the algorithm for force field 

computation described in [9] is rather slow. A much more efficient algorithm is 

introduced in Section 3.1. The force field-based map δR

r
Φ in direction δ can be defined 

by, e.g., δR

r
Φ (q)=µ(∠( ( )R

r
qΦ , δ
�

)), with µ(x)=max{0,1−2x/π}, or: 

δ ( ) max{0, ( ( ) δ) / (sup ( ) δ)}R R R

r r p r
q q p∈Φ = Φ ⋅ Φ ⋅

P

� �
. (2) 

We focus here on (2), which explicitly takes account of distance information (when 

r≠0). Unfortunately, supp∈P ( ) δR

r
pΦ ⋅
�

cannot be easily determined (unless r=0). In [9], 

Matsakis et al. replaced it with an upper bound that was determined analytically. 

However, this upper bound is often much higher than the supremum itself. As a result, 

the calculated value for δ ( )R

r
qΦ  is often unreasonably low. In Section 3.2, we show 

that supp∈P ( ) δR

r
pΦ ⋅
�

can be better estimated using a heuristic search algorithm. 
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3 Implementation 

Here, we see an object R in a digital image G as a surface covered by pixels (of 

size 1×1), not as a discrete cloud of points like in [9]. The force that one pixel exerts 

on another is defined based upon the following considerations. First, we draw a 

horizontal axis X and a vertical axis Y. For any two distinct points p and q of P, let 

θ∈[0,2π) be the angle between pq and X, pX and qX be the projections of p and q on 

X, and pY and qY be their projections on Y. Thus, the magnitude of the force that q 

exerts on p can also be computed as: 1/|pq|
r
 = |cosθ|

r
/|pXqX|

r
 if 

θ∈Θh=[0,π/4]∪[3π/4,5π/4]∪[7π/4,2π); and 1/|pq|
r
=|sinθ|

r
/|pYqY|

r
 if 

θ∈Θv=(π/4,3π/4)∪(5π/4,7π/4). See Fig. 1(a). Now, consider p and q two distinct 

pixels in G centered at points (xp,yp) and (xq,yq). We define that the force pixel q 

exerts on pixel p is in the direction of (xq−xp,yq−yp), and has the magnitude: 

Fr(p,q)=|cosθ|
r
fr(|xq−xp|) if θ∈Θh; and Fr(p,q)=|sinθ|

r
fr(|yq−yp|) if θ∈Θv, where θ is the 

angle between (xq−xp,yq−yp) and X. Now, let us only consider the case that θ∈Θh. The 

value of 1/|pXqX|
r
 mentioned above in fact is the magnitude of the force between the 

projections of the points p and q on X, pX and qX, which are points too. When p and q 

are pixels, their projections on X, I and J, are unit line segments (instead of points), as 

shown in Fig. 1(b). It is therefore natural to define fr(s), s∈Z+, as the sum of the forces 

that the points of J exert on the points of I, i.e., 

1 1

0 0
( ) 1 ( ) d dr

r
f s y x s x y= − +∫ ∫ . (3) 

Function fr is well defined on Z+ when r<2, and the double integral can be solved 

analytically. When p=q, we set Fr(p,q)=0 indicating that the forces that a pixel exerts 

on itself are balanced out. Having defined the force between two pixels, the force that 

one pixel q exerts on a raster object R (i.e., a set of pixels) can be computed as:  

( ) ( ) ( , )( , )/ | ( , ) |
R

r r q p q p q p q pp
q R p F p q x x y y x x y y∈Φ = − − − −∑ G

. (4) 

3.1 An Algorithm for Approximating R

r
ΦΦΦΦ  

For any image G of size N=m×n, Equation (4) calculates ( )R

r
qΦ in O(N), i.e., it 

calculates the entire force field R

r
Φ in O(N

2
). Here, we propose an algorithm for fast 

approximating R

r
Φ . Let q be the origin of P, i.e., q=(0,0). By rewriting (1) using the 

polar coordinates (θ,ℓ) of p, we have: 

2π 1

0 0
( ) (0,0) (θ, )( cosθ, sinθ) / d dθR R r

r r
q R

+∞ −Φ = Φ = − −∫ ∫ ℓ ℓ ℓ . (5) 

By letting ℓ=s/|cosθ| for θ∈Θh and ℓ=s/|sinθ| for θ∈Θv, (5) becomes: 

h

v

2 1

θ 0

2 1

θ 0

( ) | cosθ | ( cosθ, sinθ)[ (θ, /|cosθ|) / d ]dθ

           | sin θ | ( cosθ, sinθ)[ (θ, /|sin θ|) / d ]dθ

R r r

r

r r

q R s s s

R s s s

+∞− −

∈Θ

+∞− −

∈Θ

Φ = − −

+ − −

∫ ∫

∫ ∫
. (6) 
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In (6), point p=(θ,s/|cosθ|) (or (θ,s/|sinθ|)) lies on the line that starts from q and points 

at direction θ, and 1/s
r−1

 is the magnitude of the force between the projects of p and q 

on axis X (or Y). According to the discussion made above, we can transform (6) to 

h +

+

2

θ, 1θ

2

θ, 1θ

( ) | cosθ | ( cosθ, sin θ)[ ( ) ( )] θ

           | sin θ | ( cosθ, sinθ)[ ( ) ( )] θ
v

R r

r s rs

r

s rs

q R p f s

R p f s

−
−∈Θ ∈

−
−∈Θ ∈

Φ = − − ∆

+ − − ∆

∑ ∑

∑ ∑

Z

ℤ

, (7) 

for handling raster data. In (7), θ belongs to a set {2πk/K}k∈0..K−1 of K reference 

directions, and therefore ∆θ is 2π/K. pθ,0=q, pθ,1, pθ,2, etc., are the pixels successively 

encountered on the rasterization of the line Λθ(ω), which starts from an edge pixel ω 

of G and points at direction θ. See Fig. 1(c). Since R is crisp, which means each 

R(pθ,s) is either 1 or 0, expression ∑s∈Z+R(pθ,s)fr−1(s) in (7) can then be written as: 

+

1 1 1

θ, 1 11 1 0
( ) ( ) ( ) 1/ ( ) d d

ii

i i

bM b M r

s r rs i s a i a
R p f s f s y x x y

+ −
− −∈ = = == = −∑ ∑ ∑ ∑ ∫ ∫Z

. (8) 

M here is the number of segments of R on the line Λθ(ω) encountered after q. When R 

is convex, M≤1 for any θ and q. In (8), the rightmost double integral can again be 

analytically solved. Equations (7,8) then calculate ( )R

r
qΦ in O(KM), and calculate 

R

r
Φ in O(KMN)+O(KN)=O(KMN), where O(KN) time is required to rasterize the 

lines Λθ(ω) (for all θ and ω) in G, and to determine the segments of R on those lines. 

In practice, the value of M is usually small, however, in the worst case, the value of M 

can reach √N, which raises the complexity up to O(KN√N). When R is fuzzy, the 

manipulation of R can always be reduced to that of its level-cuts, which are crisp. 

 
Fig. 1. (a) The force between two points; (b) The force between two pixels; (c) The 

rasterization of the line Λθ(ω); (d) The searching territory PST. 

3.2 Estimation of supp∈∈∈∈P ( ) δR

r
pΦ ⋅Φ ⋅Φ ⋅Φ ⋅
����

 

When r=0, we have supp∈P 0
( ) δR pΦ ⋅
�

=|R| [9]. For r≠0, we develop an algorithm which 

searches in a pre-determined territory for the point pmax, such that 
max

( ) δR

r
pΦ ⋅

�
forms a 

good approximation of supp∈P ( ) δR

r
pΦ ⋅
�

. Equation (2) can then be replaced with: 

δ

max
( ) max{0,min{1, ( ( ) δ) / ( ( ) δ)}}R R R

r r r
q q pΦ = Φ ⋅ Φ ⋅

� �
. (9) 

For easy illustration, we express P in terms of polar coordinates (θ,ℓ) and set the 

origin (0,0) at the centroid of R. The searching territory (Fig. 1(d)) is defined as: PST = 

[δ−π/2,δ+π/2]×[0,dST]⊂P. dST=α+β/√r, where α=2∫θ∫ℓR(θ,ℓ)|ℓcos(θ−δ)|/|R|dℓdθ and 

β=2∫θ∫ℓR(θ,ℓ)|ℓsin(θ−δ)|/|R|dℓdθ, is the pre-determined searching distance. The 

searching algorithm is given as follows: 

P 

p 

q 

X 

Y 

pX qX 

pY 

qY 

|pXqX| 

θ 

Y 

X 

p 

q 

I J 

G 

θ 

| xq− xp| 

(b) 
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e 
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δ′=δ; d=dST; /*The initial searching direction and distance are δ and dST.*/ 

s_p=5;  /*The searching speed is set to 5*/ 

∆δ=0.001; /* the minimum angle difference is set to 0.001*/ 

FOR each iteration   /*The number of iterations is set to 5*/ 

δa=δ′−π/2, δb=δ′+π/2;  

WHILE δb−δa ≥ ∆δ  /*Search on the curve defined by [δa,δb]×{d} */ 

pa=(δa,d) and pb=(δb,d); 

IF ( ) δR

r a
pΦ ⋅
�

< ( ) δR

r b
pΦ ⋅
�

: δa=δa+(δb−δa)/s_p; ELSE: δb=δb−(δb−δa)/s_p; 

δ′=δb, da=0 and db=dST; /*δ′ is the adjusted searching direction*/ 

WHILE db − da ≥ 1  /*Search on the line defined by {δ′}×[da,db] */ 

pa=(δ′,da) and pb=(δ′,db); 

IF ( ) δR

r a
pΦ ⋅
�

< ( ) δR

r b
pΦ ⋅
�

: da=da+(db−da)/s_p; ELSE: db=db−(db−da)/s_p; 

d =db;    /*d is the adjusted searching distance*/ 

IF sup < ( ) δR

r b
pΦ ⋅
�

: sup = ( ) δR

r b
pΦ ⋅
�

; /* sup is initially set to 0 */ 

ELSE: RETURN pmax= pb;   /* Nothing to update means we found pmax = pb */ 

RETURN pmax= pb;     /*After all iterations, we let pmax = pb */ 

3.3 Experiments 

Let R

r
Φ be the exact force field calculated according to (4), and K R

r
Φ  be the force field 

computed using (7,8). The difference between R

r
Φ and K R

r
Φ is measured by the 

difference ratio (DR), which takes on values in [0,1], and is 0 iff R

r
Φ = K R

r
Φ : 

( | ( ) ( ) |) / (| ( ) | | ( ) |)
R K R R K R

r r r rq q
DR q q q q= Φ − Φ Φ + Φ∑ ∑ . (10) 

The force field K R

r
Φ approximates R

r
Φ . The accuracy of the approximation increases 

with K (Fig. 2(b)) and is quite high (DR is less than 0.5%) even when K is relatively 

small (K=90). The accuracy also depends on the image size N and on r (Figs. 2(b,c)). 

 

Fig. 2. Experiments. S1
δR and S2

δR in (f) are the standard maps generated using the first [3] and 

the second algorithms [10] (Section 1). All algorithms were implemented in C. 
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Let K R

r
Φɶ  be the force field computed using the algorithm proposed in [9]. Fig. 2(d) 

shows that the processing times of K R

r
Φɶ and K R

r
Φ both increase with K and N, but at 

different rates. Computing K R

r
Φ is far more efficient than computing K R

r
Φɶ and R

r
Φ . 

Once the force field is calculated, directional maps δR

r
Φ  in various δ can be computed 

using (9). The Computation is generally fast, unless r takes some arbitrarily small 

positive value (like 10
−5

) (Fig. 2(e)).  Fig. 2(f) shows that the computation of 
δR

r
Φ ( K R

r
Φ plus δR

r
Φ ) is comparably efficient to that of the standard map S

δR
. 

Let δR

r
Φɶ be the force field-based map generated by the second transformation 

proposed in [9]. Consider the case that R is a concentric shell, r=1, and δ=0. The 

values of 0

1

RΦɶ are all fairly low ( 0

1

RΦɶ appears dark in Fig.2 (g)) due to the 

overestimation problem mentioned in Section 2. This raises some serious issues. For 

example, according to intuition, pixel q (in Fig.2 (g)) is perfectly close to and to the 

right of R. However, 0

1

RΦɶ somewhat denies this perception since 0

1
( )R qΦɶ =0.5. In the 

map generated using (9), 0

1

RΦ (Fig.2 (h)), such issue does not exist and 0

1
( )R qΦ =1. 

4 Application 

Here, we illustrate the potential of the force field-based approach through a scene 

matching task. Consider a target scene depicting a number of objects. As an example, 

the scene in Fig. 3(a) contains 21 disconnected objects, Figs. 3(b,c) show two (hand-

drawn) query scenes, and the task is to determine if there exists a match between 

query and target. Note that for our purposes, a ‘match’ exists when there are objects in 

the target scene whose relative positions correspond to those found between the 

objects in the query scene. Furthermore, we want matching to be invariant to scaling 

and rotation. What follows is a description of how this task can be performed. 

Consider a reference object R and a number of located objects Li with i=1..n. 

Object R’s view histogram in direction δ, δ

R
h , is a function from {tk=k/P}k=0..P to [0,1]: 

δR δR

δ

{  | | ( ) | min | ( ) |} 1 1
( ) [( ( )) / ]

r k j r j

n n

R k i iq q t q t i i
h t L q LΦ − = Φ − = ==∑ ∑ ∑ . (11) 

δ ( )
R k

h t  counts (in a normalized way) the pixels q in the located objects such that 
δ ( )R

r
qΦ is best approximated by tk. Now, assume there are n objects in the query scene 

Q. One of them is selected as the reference object R, the others are the located objects. 

Here, R is the object whose centroid is closest to the centroid of the entire scene. 

Then, for each view direction δi=2πi/D with i=0..D−1, four view histograms of R are 

computed in Q: 

δ δ δ π /2 δ π δ 3π /2
( , , , )i i i i i

R R R R R
Q h h h h

+ + += . (12) 

Assume there are m≥n objects in the target scene T. The matching between T and Q is 

conducted in an exhaustive way: 

FOR each object O in T: 

Let O be the reference object; 

List all the possible ways of drawing n−1 objects from the other m−1 objects in 

T; 
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FOR each drawing: 

Let the n−1 objects be the located objects, which, together with the 

reference object O, form a sub-scene T′ of T; 

Compute O’s view histograms in the sub-scene: 0 π /2 π 3π /2( , , , )
O O O O O

T h h h h′ = ; 

FOR each 
δi

R
Q : 

Compute the similarity degree between 
O

T ′ and
δi

R
Q ,

δ
( , )i

O R
sim T Q′ . 

Let δmax=δk such that 
δ

( , )k

O R
sim T Q′ = maxi{

δ
( , )i

O R
sim T Q′ }, and Let 

maxδ
( , )

O R
sim T Q′  be the degree of matching between Q and T′. 

The similarity degree between 
O

T ′  and
δi

R
Q ,

δ
( , )i

O R
sim T Q′ , is computed as: 

δ δ π /2π / 2

0..3
( , ) min { ( , )}i i jj

O R j O R
sim T Q d h h

+
=′ = , (13) 

where d(h1,h2)=max{0,1−∑k|h1(tk)−h2(tk)|} measures the similarity between the view 

histograms h1 and h2. Note that d(h1,h2)=1 iff h1=h2. Finally, we present the sub-scenes 

T′ that best match Q (the sub-scenes with highest degrees maxδ
( , )

O R
sim T Q′ ). 

 

Fig. 3. A scene matching task. (a) A hand-segmented laser radar range image of the power-

plant at China Lake, CA. The image was used by Matsakis, Keller et al. in [15]. (d) The sub-

scenes of T that best match Q1, and (e) those that best match Q2, where sim is the similarity 

degree between a query and a sub-scene (after counterclockwise rotation by δmax).  

 

As shown by Fig. 3, the proposed algorithm generates reasonable results. In this 

experiment, P=100, D=360, and each force field-based map was computed using the 

algorithm defined by (7,8,9) with r=0 and K=90. Under this configuration, for each of 

the query scenes in Figs. 3(b,c), the matching algorithm finishes within one minute. 

Of course, smaller values of P, D and K can be chosen to compromise precision for 

speed. Readers may ask whether standard maps can be applied to scene matching 

tasks like the one presented here. The answer is negative. Since standard maps rely 

merely on angular deviation, they lack representation power for dimension and 

distance information, which is critical to these tasks. 

5   Conclusions 

In [9], Matsakis et al. developed a new quantitative model of the directional 

relationships to a reference object. The model relies on the idea that all directional 

sim=0.81, δmax=1° 

sim=0.77, δmax=172° 

sim=0.71, δmax=344° 

sim=0.74, δmax=2° 

sim=0.74, δmax=325° 

sim=0.62, δmax=320° 

(b) QueryQ1 

(d) (e) 

(c) QueryQ2 

(a) Target Scene T 
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maps induced by the object can be derived from a force field. However, the proposed 

algorithms lack efficiency and accuracy. In this paper, we have introduced algorithms 

that correct this flaw and we have demonstrated the potential of the force field-based 

approach through an application to scene matching. In future work, we will further 

explore the idea of using directional maps as a tool for pattern recognition and scene 

understanding. 
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