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Abstract—Previously, we introduced a method for estimating
the linguistic direction of motion of an object in a scene by
processing a temporal sequence of linguistic descriptions of its
position relative to a stationary object. This method relies on the
observation of “regular” descriptions generated through a fuzzy
logic system based on the histogram of forces. These descriptions
may not exist if the distance between the two objects is too close.
In this paper, we use fuzzy sets to generate degrees of activation
for the estimated directions of motion. Temporal fusion is applied
on these values over a fixed time window using weights calculated
from linguistic information on the distance between the objects.
The new dynamic linguistic descriptions are determined based on
the present as well as the past estimates.

Index Terms—spatial relations, linguistic description of
metion, scene interpretation, temporal fusion,

1. INTRODUCTION

PATIAL relations play an important part in scene

interpretation. Various methods to model spatial relations
between image objects have been proposed. For instance, the
histogram of angles method was used in various studies
{1)[2]{3]. In [4], Matsakis and Wendling introduced the
concept of rhe histograms of forces (F-histogram), which
generalizes and supersedes the angle histogram.

Linguistic descriptions of relative position is another
important part in the study of scene interpretation. Winston
5] and Freeman [6] used linguistic terms to represent various
primitive spatial relations between two objects. Freeman
suggested the use of fuzzy sets to model these relations. Kelier
and Wang [7] introduced a fuzzy rule-base approach for
linguistic scene description, where the relative position of two
objects was represented using the angle histogram. However,
the linguistic terms used were coarse and the approach failed
to satisfy the semantic inverse principle in [6]). We introduced
another fuzzy rule-base approach to linguistic scene
description [8] based on the concept of F-histograms [4]. This
approach offered a richer language that could be tailored to the
user’s needs. It also satisfied the semantic inverse principle.

Detecting and tracking moving objects in a scene has been
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widely discussed. The scene observation can be done via
satellite images, acrial photographs, video sequences, GPS
data, and telemetry observations. It provides a temporal
sequence of static spatial information. This information may
be extracted from each observation frame in the form of point
coordinates, lines, or regions. In [9], objects were represented
using minimum bounding rectangles. The center coordinates
of the rectangles represented the object spatial information.
Motion vectors were calculated from consecutive coordinates.
In [10], spatial information was represented by linguistic
descriptions.  These static linguistic descriptions were
generated using the method in [8]. The object’s direction of
motion was estimated by processing only the temporal
sequence of the descriptions and an appropriate dynamic
linguistic description of the motion was generated.

The static descriptions generated in [8] and used in [10]
relied on the sole primitive directional relationships (RIGHT,
ABOVE, LEFT, and BELOW). Morecver, our method in [10}
assumed the observation of regular descriptions, which may
not appear when the objects are too close and objects cannot
be assimilated to points (ambiguous configurations). In this
case, the system often gave erroneous estimates. In this paper,
we introduce linguistic distance information as part of the
linguistic descriptions used as inputs. We also assign a degree
of activation to any dynamic linguistic description that can
reasonably be used to represent the motion. Each description
is represented by a fuzzy set and viewed as a hypothesis. The
degree of activation generated at time r serves as the evidence
in support of the hypothesis, hence allowing more than one
hypothesis to be active. Keeping multiple hypotheses alive
prior to making the final decision is in accordance with the
Principle of Least Commitment proposed by Marr [11]. Each
time the direction of motion is estimated, the linguistic
distance information is used to calculate a weight reflecting
our confidence of the estimate. Next, we introduce a temporal
fusion mechanism to increase the accuracy of the estimation,
especially when the distance between the objects gets too
close. The mechanism fuses the evidence supporting current
and past hypotheses within a fixed temporal window to obtain
the correct direction of motion. The distance-based weight
allows hypotheses taken when the two objects are farther apart
to be more influential during the fusion process to compensate
for possible erroneous hypotheses generated when the two
objects pass each other at a very close distance. The
hypothesis with the maximwm evidence is selected to be the
optimum description of motion. As in [10], we still maintain
the following assumptions: one of the two objects is stationary,
both objects can be assimilated to points and are relatively
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small in size, the motion follows a straight path with constant
velocity, scene observation is taken over a regular time
interval, and the observer’s point of view is constant.

I1. BACKGROUND

A. Static Linguistic Descriptions

The input to our system is a tempcral sequence
S={sp,5).7.5, 7,87} where s, is the static linguistic description
observed at time r. The term static is used because the
linguistic description represents the relative position of the
argument object (A) with respect to the stationary referent
object {B) without hinting any sense of motion among them.
Under ideal configuration (objects are far enough apart and
can be assimilated to points), there are 24 possible
descriptions; each represents a conic region r centered on
object B, These descriptions are called the regular static
linguistic descriptions (L,). Samples of the conic regions and
their regular descriptions are illustrated in Fig. 1. The primary
and secondary direction, 8; and &;, are the two primitive
dircetions in {RIGHT, ABOVE, LEFT, BELOW} that best
describe the position of A from B [8].

(Above) 4
2 L,="A is above-right of B”

"A is mostly 1o the right of B,
but somewhat above”

,L "A is to the right of B,
but a little above”

_____ 0 (Right)
B @ el
N L,="A is perfectly to the right of B"
Fig. 1 Samples of regular static linguistic descriptions L, with their

corresponding regions r. Here, :=RIGHT and 8:=ABOVE.

B.  Estimating the Direction of Motion

We record the number of observations for each L, in § as
D,=|{t|s=L, 5€8}. D,and D, are illustrated in Fig. 2. The
dircction of motion y is estimated as

[(N N=Dycot@n + a4 )a, (1)

where a=15°, and currently N=D, /D, ifris “closer” to 8, (&
transition), N = D, /D, otherwise (O transition). When a
contiguous sequence s, consists of non-regular descriptions

with duration D, , N=(D,+0.5D,)/(D,+0.5D, }is used for

@ transition, and N=(D,’+0.5D,.}(D,+05D,) for ®

transition. The dircction ¥ belongs to the interval [-7/2, n/2)
and is defined to be modulo . For example, an angle of 3n/4
corresponds to y=-m/4. When this happens, the type of
transition must be toggled to its opposite type to maintain
directional consistency. When =0, the direction is
perpendicular to 8, and parallel with §; as shown in Fig. 2.

y=tan

619

Fig. 2 Object A moves from region ® 1o ®. The dircction ¥ can be
calculated as soon as A crosses from region @w® using D, and D,-.

C. Dynamic Linguistic Descriptions

The primary and secondary motion direction, v, and v, are
two primitive directions of motion that best describe the
direction of motion of object A. They are determined from ¥,
8, and 8, [10] as shown in Table 1. The terms RIGHT,
UPWARD, LEFT, and DOWNWARD are used for vy, and y..
They are comparable to the linguistic terms used for §, and 3.
From the example in Fig. 2 {y=-=/6, @ transition, 5=RIGHT
and 3,=ABOVE), Table 1 gives v,=5,=ABOVE (UPWARD)
and v:=0,=RIGHT.

Table Deriving 11 and ¥5, from ¥, & and &
Y 7 ® transition -} + © transition-
b il ¥ i} i
/4>y20 & S+r &t &
n2zy>d [oReis & & &t
0>y>-w/4 & & S+n S+n
-y 3 & G | G

Let ¢g=min{y|,n/2-|y}) be the angle of motion viewed from v
and Y, perspective. Based on ¢, appropriate linguistic hedges
are selected for y, and v, as shown in Table II. For compound
directions, we use the term “diagonally " followed by beth ¥,
and v.

Table 1§ Linguistic hedges for v and y,, {a=1/6)

¢ k¢ Tz
S>> hed, . Na;écandary
w2220 No hedge Dc.vcﬂefiod
3a/22¢>a/2 “Primartly” “A little”
S5a/2z¢>3a/2 “Mostly” “Somewhat”
W2y >5u/2 Compound -~ Direction

Any dynamic linguistic description (DL) is generated
following the format *A is moving [hedge of ]
Y. and [hedge of 1.1 v ™ The example in Fig. 2
yields ¢=n/6, hence DL for A is "A 1is moving
primarily upward, and a Jlittle to the
right*. There are 24 possible dynamic descriptions DL,
de {0,..,23}, where d represents a range of directions defined
as a cone-shaped region shown in Fig. 3. Since DL, captures
the motion of object A, therefore the 24 cone regions are
centered on A. See [10] for more discussion on v and dynamic

The IEEE International Conference on Fuzzy Systems



descriptions.

DL,="A is moving diagonally
to the right and upward”
.~ "Ais moving

mostly to the right,

(Upward (v,))
but sornewhat upward”

2

DL‘- "A is moving
-y +} prmariyto the rfgh!

N 5\ but a little upwar:
“DL= "A is moving to the right”
w6 (1 5)——> 0

Fig. 3 Samples of dynamic linguistic descriptions and their regions (d). For
region #=0-3, 1="To The RIGHT” and v,="UPWARD".

D. y Normalization

In [10], the frame of reference for 7y is based on the value of
3, and &,. With different values of 8, and &,, the same value of
vy may actually point to two different directions in the
abserver’s frame of reference. In this paper, we normalize ¥ to
the observer’s frame of reference. The normalized 7y is
denoted by v*: when v*=0, object A is heading to the right; v*
belongs to [0,27} and increases in counter-clockwise direction.
The normalization scheme shown in Table III assumes that

object A follows the @ transition. For (& transition, apply

TH=y*+n.
Table IEL vy normalization scheme
&
RIGHT ABOVE, °, ~ LEFT: BELOW -
RIGHT N/A PE=yH{m/2) N/A y=(3n/2)-y
5 ABOVE " yr=y N/A =y N/A
o TN N/A =1/ 2)-y N/A Y=(3m2)+y
BELOW. =Y N/A TH=n-y N/A

[II. TEMPORAL FUSION OF DYNAMIC DESCRIPTIONS

A. Degree of Activation in Dynamic Descriptions

As the distance between objects A and B decreases, there is
an increase in non-regular static descriptions. This increase
causes the y* estimation error to increase as well, since the
method in [10] was based on regular descriptions only.
Furthermore, the direction v* was mapped onto a unique
dynamic description, which limits the system flexibility in
dealing with errors. Therefore, we now assign a degree of
activation to any dynamic description that can reasonably be
used to describe the motion of object A in direction y*. Each
dynamic description is viewed as a hypothesis represented by a
membership function py.  For this experiment, we use a
triangular function with the peak located at the midpoint of the
range d and 50% overlap with each adjacent function.
INustration of the iy is giver in Fig. 4. From this example, we
can see how we can have two hypotheses for v*, each with a
degree of activation of py(y*) and pLi(y*).

620
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3o 15" YR oO°

Fig. 4 The membership functions for dynamic description regions, [tz The
estimated direction, Y*, can reasonably be expressed using DLseo (A is
moving to the right)and DLs (3 is moving primarily to
the right, but a little upward), with degrees of activation of
Ho(*) and py(y*) respectively. Note to(y*}= 1 (v*).

pﬁ)(Y*J
(v}

B. Distance Linguistic Information

We now add the distance information into the static
linguistic descriptions we use as inputs. Six terms are
employed: VERY_CLOSE (Disty), CLOSE (Disty),
SOMEWHAT CLOSE (Dis), SOMEWHAT FAR (Disty),
FAR (Disty), and VERY_FAR (Dists}. Note that for our first
approach, the linguistic distance information is crisply defined
(of course, this need not be the case) by computing the
minimum distance between any pair of points in A and B; the
mapping of the minimum distance onto the cerresponding
linguistic term is done following the scheme in Fig. 5. The
static description for the position of A relative to B is *A 1is
mostly to the right of B, but somewhat
above.

A is somewhat far from B.”

Fig. 5 Distance linguistic description: “A is somewhat far from B”

C. Processing the Distance Linguistic Information

As we noted previously, non-recgular static linguistic
descriptions tend to appear more often as the distance between
the objects closes. The more non-regular description appear in
S, the higher the difference between v* (estimated direction)
and the actual direction of motion. Hence, the accuracy of the
estimation is an increasing function of the distance between the
two objects, which motivates us to introduce the linguistic
distance information into the estimation of the direction of
motion. First, we need a method tc assign a value that
represents the “overall” distance of object A from object B
when v* is calculated. In Fig. 6, A moves from A to A; by
crossing regions (D and (&. At location Ay, as A crosses over
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from @ to &, ¥* is calculated using D,=D, and D,=D,.
During the motion from A, to A;, the distance between object
A and B are represented by linguistic distance descriptions
Dists, Disty, and Dists, with total number of occurrences of
Obs(Dist;), 0Obs(Dist;) and Obs(Dists) respectively (and
Obs(Disty) = Obs(Dist)) = Obs(Dist;) = 0).

T
‘Obs(Dist,)
A

Fig. 6 Observation of distance information prior to calculating w*.

To calculate the overall distance A between objects A and B
during the motion from A, to A;, we model each Dist; using a
fuzzy set Hpist;as shown in Fig. 7. We use triangular

membership functions that peak at the mid-point of each range
defining Disy;, and with 30% overlap with each adjacent
function. The activation level of Hpist is:

_ Obs(Dist ;) 2
o= S Obs(Dist;)
i
The activation level ¢; is then applied to Hpjy - In this

experiment, we use the correlation-product inference rule [12]
and the resulting fuzzy sets are added to give us the aggregate
fuzzy set. A, the overall distance associated with ¥*, is
obtained by defuzzifying the aggregate fuzzy set. Here we use
the centroid defuzzification scheme.

Hoist, Home,

Hpugr,

Hoist, Poist, Hoiet,

distance

zj Hpist,

e
7\

Defuzzfied Aggmgate Digance for y=
Fig. 7 The fuzzy sets for Dist; and how A for example in Fig. 6 is calculated.

D. Temporal Fusion

As explained in [10], at time #, the estimated direction of
motion v* = 1,* is calculated using only the observation
information from the last two conic regions » and r’.
Information from other regions prior to » or past estimates 7, . *
for k21 were not taken into account during the calculation for
v*. To take advantage of the past information and the
knowledge we have on the correlation between the estimation
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accuracy and the distance between objects, we introduce a
temporal fusion function H{t,k,d) that operates over a temporal
window k on hypothesis p4 at time 7.

k-1

H(tkd)= Y wi_itig(Yi-i) ®

i=0
For our experiments, we use £ = 5 as the width of cur temporal
window, The weight w,e [0,1] represents our confidence on the
accuracy of ¥*. It is an increasing function of the overall
distance A, between objects A and B throughout the
observation period that leads to the calculation of y*. Here, w,
is calculated as w=A/165, where 165 is the midpoint of the
support for #Dist; . '

As discussed in section ILA, pu(v*) is the degree of
activation for each hypothesis, d is the secter number
corresponding to a specific dynamic linguistic description {(sce
Fig. 3) and py is the membership function representing the
dynamic description (se¢ Fig. 4). Now, H(t,kd) is calculated
for all de{0,.,23}. H(tkd) can be viewed as the total
weighted evidence that supports the hypothesis that the
dynamic linguistic description & is the most appropriate
description for the motion of object A. At time ¢, the linguistic
expression FDL, selected for describing the motion is the
dynamic description d whose H{t,k,d) is the highest.

FDL; = argmax(H (t,k,d)) ()
d

IV. RESULTS

Our simulation program is implemented using the C
language with OpenGL graphic library and the Glut interface.
Objects A and B are circular. The radius for each object is
determined individually. The user sets the coordinates of
object B and the starting and ending coordinates that define
the path for object A. The path is traced using the
Bresenham’s line algorithm. First, object A passes object B at
a “very close” distance. We expect to see inaccurate dynamic
descriptions generated when A is at the closest position to B.
The temporal fusion method is expected to overcome this
problem and return the correct dynamic description, providing
that adequate evidence to support the correct dynamic
description is available prior to object A getting too close to B.
In the following experiment, we move the path of A farther
away from B to show that the accuracy of dynamic
descriptions generated by a single estimation of v* increases
as the distance between objects A and B increases.

A. Experiment 1: A is "very_close” 10 B

We now show examples of estimation errors that occur
when the distance between objects A and B is very close and
how the temporal fusion approach recovers the correct
dynamic description (Fig. 8). A white line marks the path of
the motion at 155°. The expected dynamic description is “A
is moving mostly to the left, but somewhat
upward” (d=10). The object radius is 10 pixels. Small
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circles along the path identify the spots where transitions of
regular static descriptions occur and dynamic descriptions are
generated. The circles are called transition points and are
numbered in the order of occurrence (1 to 11). These circles
have smaller diameter than that of the actual object.
Concentric tings centered on B mark the boundaries for
distance linguistic descriptions.

Fig. 8 Experiment 1: object A is heading to direction 155°. The worst
estimation errors are observed when A is “very_close” to B (transition points
5 and 6). Results are shown in Table IV.

In Table [V, column ¢ lists the order of tramsition points
along the path of motion. Values f=1 and r=2 are not
included, since we do not have sufficient observations to
calculate y,* (for more information see [10]). Column DPL's(1)
and DL’ (2) show the dynamic region number o of the first
and second choice of dynamic descriptions generated from a
single v,* estimation. Their degrees of activations are given in
Ha (1) and g, (2). Column FDL’; (1) and FDL'; (2) lists the
region number & for the first and second choice dynamic
description generated using the temporal fusion mechanism.
Their degrees of activations are given in H (1) and H (2).
Region d=11 represents “Object A 1is moving
primarily to the left, but slightly
upward”, and 4=10 represents *Object A is moving
mostly to the left, but somewhat upward”.

Table IV Results from experiment 1 in Fig. 8

. - DL, m | DLy | - fa oL, | H FDLY H e
. -] @ | (2 (2) (1) () (2) )

3 {1542 ] 10 Jons | 11 [ o8t 10 6.349 11 0.137 | 0486
4 161 11 0735 | 10 | 0.265 10 0.405 11 0.290 | 0.208
5 | 1979 | 13 | 0307 | 14 | 0.193 10 0.405 11 0.290 | 0.007
6 | 1213 8 0,914 9 0.086 10 0.405 11 0.290 | 0.G91
7 [ 1435 ] 10 | 0569 9 0.431 10 0.456 il 0.290 | 0.051
8 | 1565 | 10 | 0.569 11| 0.431 11 0.192 10 0.159 | 0.091
9 | 1543 | 10 | 0716 | 11 | 0284 10 0.168 13 0.078 | 0.091
10 [ 1608 | 11 0.786 | 10 | 0214 10 0.199 11 0,176 | 0142
11 | 1555 | 10 | 0.634 11| 0366 10 0.395 11 0.280 | 0.308

The dynamic description generated from a single v.* may
not capture the true direction of motion when A and B is too
close. The worst error are found at r=5 and =6 where A is
“very close” to B. The transition points along the path of
motion {see Fig. 8) mark the location where the next regular
static description is first observed. Ideally, this should occur
right at the boundary between the two adjacent regionms.

622

However, at r=>5, the transition is not detected until A is well
into the region »=17. This indicates the presence of non-
regular static descriptions during the transition from r=18 to
r=17. The adverse effect of non-regular descriptions on the
accuracy of v,* is lessened by distributing the evidence of non-
regular description D, to both regular regions (r=18 and
r=17) as discussed in section ILB. This method may not work
well if number of non-regular descriptions 5,, gets too large

relative to the number of regular descriptions observed.
Between =4 and =5, we observe 6 non-regular descriptions
and only 10 regular descriptions, hence the value for D,—5 (see
Fig. 2) is inaccurate, because it is larger than it should be
(some portion of r=17 has been erroncously identified to
belong to r=18). This causes the value of ,* at r=35 (using D,
= D,_3 and D, = D,;9) to be off by 42.9° (the largest in this
experiment) compared to the actual direction of motion (155°).
The inaccuracy of D,_;z also propagates to v,* calculated at
t=6 (now use D, = D,_;7 and D, = D,_;3) which results in an
error of 33.7°, the second largest estimation error in this
experiment. Excluding =5 and =6, the average y,* error for
the whole motion is just around 4°,

At =5, the dynamic description generated from a local y,* is
“Object A is moving primarily to the left,
but a little downward” {(d=13). It still correctly
captures the value for v, (to the left) but fails to capture the
correct value for 1, (upward). The dynamic description =6 is
“A is moving mostly upward, but somewhat
to the left” (4=8). It fails to express the correct
direction of motion; it reverses the order of 7, and v,. On the
other hand, almost all FDL';obtained from the temporal fusion
method return the correct dynamic description throughout the
motion, thanks to the distance-based weight w, used in the
fusion process. The enly error in FDL'; occurs at (=8:
“Object A is moving primarily to the Ieft,
but a little upward” (d=11). However, from Table
IV, we see that the next highest total evidence Hiikd)
corresponds to the correct dynamic description “A is
moving mostly to the left, but somewhat
upward” (d=10). Moreover, the two H{tkd) values are
relatively close: 0.192 for d=11, 0.159 for d=10. The
direction 155° is in a region where lg-jp and py-y;overlap,
hence both DL,.;¢ and DL,.;; make good candidates for the
description of this motion. We expect DL 49 to carry a higher
degreec of confidence because direction 155° is closer to the
peak of g-10. However, it is not completely unreasonable to
use DL, to describe this motion either. The true direction
155° is close to the point of maximum uncertainty between the
two hypotheses (occurs at direction 157.5° where py-1;(1*) =
Ma=10(%*) = 0.5). Hence, we feel that the observed error from
the temperal fusion approach is within an acceptable limit,

B. Experiment 2: A is “close” from B

Object A moves to heading 161.4°. It passes object B at a
“close” distance {see Fig. 9). The expected dynamic
description is *Object A is moving primarily to
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the left, but a little upward” (d=11). From
Table IV, we note that errors in DL, (1) are observed at 1=5,
t=6, and £=7. However, these errors are less severe than those
observed in experiment 1. At r=5, the dynamic description is
"Object A is moving to the left” (d=12), while
at 1=6 and 7=7 the description is A is moving mostly
to the left, but somewhat upward" (d=10).
Both d=12 and d=10 are adjacent to the expected description
of d=11. However, for this heading, only H4-y and Lg-p
should be activated, which makes d=10 to be the next best
description after 4=11. The maximum estimation error is just
above 14° much smaller compared to that of experiment 1.
This indicates a very small number of non-regular descriptions
observed at this distance. Visually, we can confirm this notion
by noting that all transition points along the path of motion are
identified just around the boundary between two adjacent
regions r. All dynamic descriptions gencrated using the
temporal fusion approach yield the correct values {d=11) as
shown in column FDL'; (1). The temporal fusion results also
confirms that the dynamic description d=10 is the second best

description for this motion, as sho in column FD,, Q).

e

Fig. 9 Experiment 2: object A is heading to direction 161.4°, The closest
distance between A and B is “close”. Both the number and severity of errors
in this experiment are less compared to those observed during Experiment 1.

Table V Results from experiment 2 in Fig, 9

o pLY M L', P FDLY H | FDL, H N
. ¥ 1)) {1 ) 2) .| {1 ) 2} {2) !
3 [e0s | 1 0.695 10 | ol3es 11 0.453% 10 0.2 | 0.635
a4 | 1638 | 11 0.923 10 | 0077 11 0.797 10 0228 | 0370
5 [ 1748 | 12 | 0655 | 1t | 0345 11 0.891 10 0228 | 0273
6 [ 1523 | 10 | 0847 | 11 { 0153 1 0933 10 0.459 | 0273
7 | 1471 | 10 [ os07 9 0.193 11 0.933 10 0679 | 0273
8 | i644 | 11 0.96 10 .04 11 0.739 10 0490 [ 0273
9 163 1] 0.866 { 10 | 0,134 1l 0.664 10 0503 | 0.307
10 [ 1622 | 11 0Rl4 | 10 | 0.186 11 0.950 10 0590 | 0.467

V. CONCLUSION AND FUTURE WORK

In [10], we introduced a method for motion estimation and
description using linguistic expressions as the only inputs,
However, the method does not work well if the distance
between the considered objects A and B is too close. With this
in mind, we added linguistic distance information to the static
linguistic descriptions used as inputs. Then, we employed a
fuzzy set to represent ¢ach range of motion directions
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associated with each possible dynamic description. This
allowed us to assign degrees of activation to multiple dynamic
descriptions. We introduced a temporal fusion mechanism
into the system, which took advantages of the distance
information and the degrees of activation given to multiple
candidates for dynamic descriptions. From our examples
using synthetic data, we showed that the temporal fusion
approach increased the system robustness in dealing with
errors attributed to distance-induced uncertainties. The current
system still relies on regular static descriptions to identify the
transition from one cone-region to the next. With the help of
distance information and temporal fusion, our current system is
able to robustly handle some non-regular descriptions
(linguistic descriptions of ambiguous configurations [8]).
However, if the distance between the two objects remains tco
close during the motion, then it is possible that there is no
regular static description generated at all. As the next step, we
will extend the system’s capability to deal with both regular
and non-regular static descriptions to increase its reliability
and reduce its sensitivity to objects’ sizes, shapes and the
distance between them. We also plan to add the ability to
detect and describe changes in direction of motion.
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