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Abstract

In a previous work, we defined a new approach to evalu-
ating directional relations between objects (such as “is to
the right of”, “is above”...). The approach is based on
the computation of a histogram of forces. We show in the
present paper that the notion of the histogram of forces can
also be useful in pattern recognition. The aim of this study
is to classify orbits and sinuses. Using force histograms in-
stead of geometrical criteria (like compactness or degree
of ellipticity) allows more accurate classification to be pro-
duced. Moreover, the proposed approach is low computing
time.

1. Introduction

The database used in this study is composed of several
orbit and sinus drawings provided by a French medicine
team (Université Paul Sabatier). These drawings were de-
fined from craniums (3rd century A.D.) found in a necrop-
olis (Nubia [6]). Experts distinguish four models of sinuses
(bean, foliaceous, pyramidal, fan-shaped) and four models
of orbits (rectangular, elliptical, trapezoid, circular) [4]. Our
aim is to classify each orbit and sinus of the database. In
the same drawing the two orbits belong to the same class
whereas the two sinuses are independent.

2. Relevant Features

2.1. Classical Features

In a first approach, simple geometrical characteristics
were used to classify the objects: the degree of compact-
ness, and the degree of ellipticity (the axes being given by
the moments of order 0 to 2 [5]). Nevertheless, these fea-
tures (and their combination) often gave incoherent results.
The perimeter has a large effect on the calculation of the
compactness, and when the drawing is not sharp, the use of

such a feature may end in a bad classification (for instance,
the orbits in example 1 were found elliptical instead of rect-
angular). A polygonal approximation of the objects should
be a solution to this problem. However, the loss of informa-
tion may result in a low recognition rate for the fan-shaped
sinuses. The degree of ellipticity is not suited either to the
classification of this type of object. An original approach
based on the computation of a histogram of forces is pre-
sented in the next section.

2.2. Histograms of Forces

A histogram of forces provides a representation of the
relative position of an object with regard to another, and
allows rapid fuzzy qualitative evaluation of any directional
relationship between these objects [2] [3]. In this section,
we briefly explain how such a histogram is computed. The
euclidean affine plane is referred to the directional orthog-
onal frame
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2.2.2 Handling of Longitudinal Sections
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algebric expression corresponding to the process of a given
couple depends on the relative position of the segments.

3 Prototypes
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Eight drawings defined by an expert constituted the pro-
totypes of the classes of orbits and sinuses. Each drawing
was scanned, the resulting images were filtered, and the full
regions corresponding to the orbits and sinuses were deter-
mined and labelled. Then 24 histograms were computed.
Half are histograms of constant forces, denoted 
 / . They
result from function

� / . The others, 
 2 , are histograms of
gravitational forces. They result from function

� 2
. Each

histogram represents the relative position (i) of the right or-
bit with regard to the left one (ii) or of the right sinus with
regard to itself (iii) or of the left sinus with regard to itself.
In the second and third cases, the histogram actually corre-
sponds to a “signature” of the sinus.

4 Experimental results

About forty drawings of orbits and sinuses 
 defined
from craniums found in a necropolis 
 constituted the test
database. Each drawing was scanned and the resulting
image processed as above. Then, for each image, six
histograms were computed ( 
 / and 
 2 , for the couple of
orbits, and for each sinus). The classification of orbits
and sinuses is based on the computation of similarities
between the histograms associated with the test images
and those associated with the prototypes. We used the
following ratio, where

�
and

�
are the histograms to

compare:
� � < � � � � /�� 1 �� /�� 1 � . Three results are presented

below. The following symbols are used for the orbits: Re =
Rectangular, El = Elliptical, Tr = Trapezoid, Ci = Circular
and for the sinuses: Be = Bean, Fo = Foliaceous, Py =
Pyramidal, Fs = Fan-shaped.

Example 1

� Similarity ratios ( 
 / )
Orbits Sinus left right

Re 94.90 Be 22.05 11.67
El 85.89 Fo 92.32 37.90
Tr 89.60 Py 85.62 80.74
Ci 93.52 Fs 59.07 38.42



� Similarity ratios ( 
 / normalized)
Orbits Sinus left right

Re 96.51 Be 65.62 39.07
El 79.39 Fo 92.32 66.40
Tr 87.88 Py 82.14 72.90
Ci 92.53 Fs 56.48 33.63

� Similarity ratios ( 
 2 )
Orbits Sinus left right

Re 97.49 Be 7.59 1.37
El 82.68 Fo 61.32 11.09
Tr 78.96 Py 89.68 37.33
Ci 95.30 Fs 57.57 10.41

� Similarity ratios ( 
 2 normalized)
Orbits Sinus left right

Re 96.51 Be 59.31 37.29
El 83.00 Fo 95.20 62.23
Tr 88.10 Py 90.36 78.20
Ci 93.33 Fs 68.99 43.27

The size of the sinuses may vary a lot from one cranium
to the other, and numerous misclassifications happen if the
histograms are not normalized. In this first example, the
left sinus is actually foliaceous, and not pyramidal.

Example 2

� Similarity ratios ( 
 / normalized)
Orbits Sinus left right

Re 62.87 Be 67.86 91.13
El 76.07 Fo 96.40 73.30
Tr 68.92 Py 79.43 58.42
Ci 65.75 Fs 58.41 79.32

� Similarity ratios ( 
 2 normalized)
Orbits Sinus left right

Re 53.55 Be 63.31 81.46
El 74.14 Fo 94.29 81.43
Tr 70.09 Py 84.66 65.79
Ci 66.20 Fs 73.65 93.57

Even normalized, the 
 / -histograms often lead to
incorrect classifications. In this second example, the right
sinus is actually fan-shaped, and not bean-shaped.

Example 3

� Similarity ratios ( 
 2 normalized)
Orbits Sinus left right

Re 90.21 Be 51.42 55.82
El 92.93 Fo 86.11 93.36
Tr 96.52 Py 95.87 95.67
Ci 94.14 Fs 59.82 64.94

The use of normalized 
 2 -histograms allows most of the
tested objects to be classified correctly. However, some par-
ticular cases have to be pointed out. The two orbits of a
cranium normally belongs to the same class (whereas the
two sinuses are independent and may belong to different
classes), but there are a few exceptions. In this third exam-
ple for instance, the experts consider the left orbit circular
and the right one trapezoid. We found three similar cases in
the database.

5 Conclusion

We have shown in this paper that the notion of the his-
togram of forces can be exploited in pattern recognition.
This has been illustrated with a classification problem. The
notion of the 
 -signature has also been introduced. The
 -signature of an object is a powerful representation of its
shape.
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