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In this paper, we introduce a system able to generate an intuitive, human-like linguistic description of the 

topological relationships between two objects. The description includes approximate terms commonly found in 

daily communications. It attempts to capture the essential characteristics of the relationships, while leaving out 

superfluous and possibly overwhelming detail. The objects are 2-D image objects. They need not be convex, nor 

connected, and they may have holes in them. Each description is built around Allen relations, based on 

information extracted from F-histograms. It consists of a topological component that indicates the primary 

topological relationships, directional estimates of where these relationships are most prominent, and a self-

assessment component which reflects the complexity of the situation. Experiments on synthetic and real data 

validate the approach. 
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1 Introduction 

 

In human-human interaction, people often communicate about space through natural language, drawings and 

gestures, which all carry complementary information. Interfaces based on the first two modalities are expected to 

expand the community of users and suit the demand for a wide-ranging access to computer systems, including 
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Geographic Information Systems (Stephanidis 2001). Machines that could comprehend the organization of 

objects in space and could reason and communicate linguistically about space, like humans do, would be 

immeasurably helpful in many areas. They would facilitate the routine work of the experienced user. They would 

be accessible to the visually impaired. They would benefit the everyday, non-expert user, who is not inclined to 

spend much time on training and does not want to struggle with state of the art WIMP (Windows, Icons, Menus, 

Pointers) interfaces.  

In everyday situations, space is often viewed as a construct induced by spatial relationships, rather than as 

a container that exists independently of the objects located in it. The past ten to fifteen years have seen 

significant advancements in the development of mathematical and computational models of distance, directional, 

and topological relationships between image objects (Bloch 1999, Clementini and Di Felice 1996, Egenhofer and 

Herring 1994, Guesgen 2002, Krishnapuram et al. 1993, Matsakis and Wendling 1999, Nabil et al. 1995, Petry 

et al. 2002). Over the same period, several methods have been proposed for generating automated linguistic 

descriptions of these relationships. 

Regier (1992), for instance, presents a neural network-based system that learns to associate spatial terms 

with pairs of 2-D objects. The terms are learned independently from each other, using positive and negative 

examples. The system can be trained to recognize English prepositions (e.g. above) as well as prepositions in 

other languages (e.g. the Russian preposition iz-pod). It can also be trained to recognize prepositions that convey 

the idea of motion (e.g. over). However, only two topological relationships are actually considered: inclusion 

and contact. They are modelled by crisp, all-or-nothing relations. Moreover, only simple convex objects, such as 

triangles, circles and rectangles, are handled. 

Kopp (1994) also uses a connectionist approach. In the training phase, his system learns to recognize some 

objects and spatial relationships. It is presented with a series of images and associated textual expressions. In the 

testing phase, the system is presented an image only, and is asked to generate a textual expression on its own. 

The images, however, are 64 64 binary images, and the objects are 5 5 predefined masks. Only directional 
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relationships are considered (right, over, left, under). Simplistic descriptions are produced, such as ‘frog under 

fly’, ‘frog left of cat’, or ‘cat right of frog under fly over dog’.  

The linguistic expressions output by the system in Abella and Kender (1999) are far more elaborated. The 

system generates path descriptions for getting from a start location to a goal location, such as: ‘First, find the 

Chinese Pavilion which is the leftmost one near the German Pavilion. Then, find the Norwegian Pavilion which 

is the leftmost one next to the Chinese Pavilion. The Mexican Pavilion is the topmost one below the Norwegian 

Pavilion.’ (The example is set in Disney World.) The topological relationships, however, are neglected. Only 

inside can be handled by the system. Moreover, the objects are approximated by rectangles. 

The approximation is rather crude, and some authors turn to angle histograms (Krishnapuram et al. 1993, 

Miyajima and Ralescu 1994). A histogram of angles is a quantitative representation of the relative position 

between two objects A and B. It encapsulates structural information about the objects as well as information 

about their spatial relationships. The objects are not necessarily convex, nor disjoint, and they are not 

approximated by rectangles or other elementary entities. In Keller and Wang (2000), angle histogram values feed 

neural networks trained on aggregate responses from a panel of people. The outputs of the networks are spatial 

relationship numeric values: they tell us to what extent object A surrounds, is above, below, to the right or left of 

object B. A system of fuzzy rules then produces a final linguistic analysis, such as: ‘The roof is right of the tree.’ 

‘The stack buildings are surrounded by a pipe.’ ‘A convoy of vehicles is below-right of the SAM (Surface-to-Air 

Missile) site.’ 

The system in Matsakis et al. (2001) only handles the four directional relationships. It does not handle 

surrounds. It has, however, more descriptive power. Object pairs are represented by force histograms (Matsakis 

and Wendling 1999), which generalize and supersede angle histograms. Examples of outputs are: ‘The group of 

storehouses is loosely above-left of the stack buildings.’ ‘The storehouse 9 is perfectly above the stack buildings, 

but slightly shifted to the right.’ ‘The tower is to the left of the stack buildings, but a little above.’ (The example 

is set in a power plant.) The system is able to indicate how satisfactory each description is, i.e. to what extent it is 

necessary to turn or not to other relationships.  
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In Skubic et al. (2003), the system above is expanded and adapted to robot navigation. The linguistic terms 

(which are stored in a dictionary) are changed accordingly, and near, far and surrounds are added to the set of 

available relationships. The system is fed with readings from sonar sensors placed around the robot. Examples of 

outputs are: ‘An object is mostly in front of the robot, but somewhat to the left. The object is far from the robot.’ 

‘An object is on the left of the robot, but extends forward relative to the robot. The object is very close to the 

robot.’ ‘The robot is surrounded, but there is an opening on the rear-right.’ 

Angle and force histograms are ill-suited to topological information extraction. To address this issue, 

Wang and Makedon (2003) design the R-histogram, another quantitative representation of the relative position 

between objects. The R-histogram-based system presented in Wang et al. (2004), however, can only handle two 

topological relationships: inside and outside. Moreover, the system outputs spatial relationship values and stops 

short of generating natural language descriptions. 

Intelligent computerized systems for spatial data processing should support linguistic queries and 

outputs that include approximate terms—which people commonly employ when describing spatial relationships. 

In Skubic et al. (2003), mentioned above, approximate terms are used in conjunction with distance and 

directional relationships. In Zhan (2002), they are used in conjunction with topological relationships: ‘Region Q 

covers region R a little bit.’ ‘Region Q nearly completely covers region R.’ ‘Region Q covers region R 

somewhat.’ A fuzzy set model of these terms is developed on the basis of cognitive evidence obtained through 

experiments with human subjects. Only convex regions and the relationship covers are, however, considered.  

In this paper, we introduce a system able to generate a linguistic description of the topological 

relationships between two 2-D image objects. We designed it with the following in mind: the system should 

handle more than just one or two relationships; it should not be limited to convex regions; it should make use of 

approximate terms. It was argued in Wawrzyniak et al. (2004) that the descriptions could be built around Allen 

relations (Allen 1983), based on information extracted from F-histograms (Matsakis 1998, Matsakis and 

Wendling 1999). The F-histogram is a generic quantitative representation of the relative position between two 

objects. In Matsakis and Nikitenko (2005), it was shown that F-histograms could be coupled with any set of 
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mutually exclusive and collectively exhaustive spatial relations between segments on an oriented line. The Allen 

relations constitute such a set. The descriptions generated by the system presented here could be built around 

other relations. The set of Allen relations, however, is a well-known set, of reasonable size, which has been 

extensively used. Moreover, as shown by Knauff (1999) through memory experiments on conceptual cognitive 

adequacy, the Allen relations seem to describe some important aspects of human conceptual knowledge about 

spatial relationships. The information they embed is similar to the information people use when representing and 

remembering spatial arrangements. The paper is organized as follows. In Section 2, we review the notion of 

Allen F-histograms. Section 3 deals with how the linguistic descriptions are generated from these histograms. 

Experimental results are in Section 4. Conclusions and directions of future work appear in Section 5. 

 

2 Allen F-histograms 

 

Consider two 2-D objects, A and B. An F-histogram F
AB

 is a numeric function used to represent the position of 

A (the argument) relative to B (the referent). The principle is illustrated by figure 1. For any direction , the 

value F
AB

( ) is computed by decomposing A and B into pairs (Ik,Jk) of aligned longitudinal sections. F
AB

( ) 

depends on how the values F(Ik,Jk, ) shown in figure 1(b) are calculated and aggregated. For instance, Ik and Jk 

can be seen as metal rods of negligible diameter and F(Ik,Jk, ) as the scalar resultant of gravitational forces: the 

forces exerted by the particles of Ik on those of Jk and that tend to move Jk in direction . The F-histogram F
AB

 is 

then called a force histogram. Force histograms are specialized in the modelling of directional relationships (e.g. 

see Matsakis 2002). Allen F-histograms constitute a different family of F-histograms. They are F-histograms 

coupled with Allen relations (Matsakis and Nikitenko 2005). Originally introduced to represent knowledge about 

time intervals, the thirteen Allen relations (Allen 1983) can be seen as mutually exclusive and collectively 

exhaustive spatial relations between segments on an oriented line. They are denoted by <, m, o, s, fi, d, =, di, si, 

f, oi, mi and > (figure 2). Let A be the set of Allen relations. Consider the Allen F-histogram Fr
AB

, where r A. 

Each pair (Ik,Jk) of longitudinal sections defines pairs (Iki ,Jkj) of segments for which r can be readily assessed. 
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Figure 1.   F-Histograms. Principle.  (a) For each direction , the space is partitioned into parallel lines. As an example, the second line 

from the top intersects the objects A and B in I1=I11 I12 and J1, where I11, I21 and J1 are segments. I1 is a longitudinal section of A, and J1 is a 

longitudinal section of B.  (b) A numeric value F(I1,J1, ) is attached to these aligned sections I1 and J1.  (c) The values F(Ik,Jk, ) obtained 

for all lines in direction  are combined into a single value F
AB

( ). 

 

 

 

 

 

 

Figure 2.   Allen relations. The black segment is the referent. The grey segment is the argument. As an example, the relations oi and f are 

linked because one can be obtained directly from the other by moving and resizing the referent or the argument in a continuous way: oi 

and f are conceptual neighbours (Freksa 1992). 

 

 

Fr(Ik,Jk, ) is obtained by aggregating the r(Iki ,Jkj) values appropriately for all i and j. Finally, Fr
AB

( ) is a 

weighted sum of the Fr(Ik,Jk, ) values for all k. It is such that r A Fr
AB

( ) represents an area: this area, as 

illustrated by figure 3(a), can be used to measure the extent of object interaction in direction .  

The computation of Fr(Ik,Jk, ) is not that simple, however, and we need to expand a bit. The Allen relations 

and longitudinal sections are actually fuzzified, to guarantee that the Allen F-histograms change continuously with 

respect to the object configuration. If an object is slightly shifted in space, for example, or rotated, or resized, or 

stretched, the histograms change equally slightly. As many authors early emphasized (Dutta 1991, Freeman 
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1975, Robinson 1988, Wang et al. 1990), fuzzy set theoretic approaches—e.g. see Klir and Yuan (1995)—are of 

great interest for spatial modelling and reasoning because of their capability to deal with imprecision and achieve 

robustness. Here, any r in the set A of Allen relations is seen as a continuous function onto [0,1] (i.e., r is 

fuzzified). See figure 3(b) for an illustrative example. Two properties are worth mentioning. Consider any two 

segments Iki and Jkj. The (fuzzy) relations are collectively exhaustive: r A r(Iki,Jkj) = 1. Non-direct neighbours in 

the graph of figure 2 are mutually exclusive: for any r1 and r2 in A, if r1 and r2 are not direct neighbours then 

r1(Iki,Jkj)=0 or r2(Iki,Jkj)=0. Moreover, when any two segments Iki and Ikj of any longitudinal section Ik get closer 

and closer to each other, it is considered that the points in between belong more and more to Ik (i.e., Ik is fuzzified). 

When close enough, the two segments will basically be seen as a single segment. For an illustrative example, see 

figure 3(c). In the end, computing Fr(Ik,Jk, ) actually consists in processing the -cuts Ik and Jk of the (fuzzy) 

sections Ik and Jk and aggregating the r( Iki , Jkj) values appropriately for all , i, and j.  

Examples of object pairs and associated Allen F-histograms are shown in figure 4. The argument object A 

is in light grey, the referent B in dark grey, and areas of intersection in mid-grey. For each pair (A,B), the 

thirteen Allen F-histograms are plotted in the same diagram and arranged in layers. This is well illustrated in 

figure 4(a). The thirteen F r  
A     B

( ) values on the Y-axis (most of them are actually 0) describe the spatial 

relationships along direction . Their sum r A F r  
A     B

( ) is the total height of the layers, and measures the object 

interaction in direction , as mentioned earlier. Figures 4(b)(c)(d)(e) demonstrate the effects of fuzzifying Allen 

 

 

 

 

 

 

 

 

 

 

Figure 3.   On F-histogram computation.  (a) The sum r A Fr
AB

( ) is the total area of the dark grey regions, which are facing each other in 

direction .  (b) Before fuzzification of the Allen relations, >(I1,J1) is 1 and mi(I1,J1) is 0, >(I2,J2) is 1 and mi(I2,J2) is 0, >(I3,J3) is 0 and 

mi(I3,J3) is 1. After fuzzification, however, >(I2,J2) and mi(I2,J2) are both greater than 0 and less than 1.  (c) Before fuzzification of the 

longitudinal sections, the points M and N do not belong at all to the sections I1=I11 I12 and I2= I21 I22. After fuzzification, the point N 

belongs to I2 to some extent.   
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relations and longitudinal sections. In figure 4(b), no fuzzification is in effect. For any direction in the plane, the 

only relations present are < and >. In figure 4(c), m and mi appear as a result of fuzzifying Allen relations, and di 

appears as a result of fuzzifying the longitudinal sections of the argument. In figure 4(d), the relations < and > 

disappear as B becomes adjacent to A, and the only fuzzification in effect is that of the longitudinal sections of 

the argument. Finally, in figure 4(e), the hole in the referent disappears completely, and with it disappear all 

traces of fuzziness. The only relation remaining is di. The reader will find in Matsakis and Nikitenko (2005) all 

details concerning the computation of Allen F-histograms. 
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Figure 4.   Examples of object pairs and associated Allen F-histograms.  (a) The thirteen histograms are plotted in the same diagram and 

arranged in layers.  (b)(c)(d)(e) Effects of fuzzifying Allen relations and longitudinal sections.  
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3 Generating linguistic descriptions 

 

Our goal is to capture the essence of the topological relationships between two complex 2-D objects A and B 

with a natural language description LAB that relies on the Allen relations. The description usually consists of 

three components. The topological component is built around the Allen relations that best represent the spatial 

relationships between the objects. The self-assessment component indicates to what extent the topological 

component succeeds in capturing the essence of the relationships. The directional component gives the 

directions along which the Allen relations mentioned in the topological component are most prominent. A 

typical description might read as follows: 

  A mostly meets but somewhat overlaps B.  Topological Component 

  The description is rather satisfactory.  Self-Assessment Component 

 
L

AB
 

  A meets B to the northeast. 
  A overlaps B loosely to the east.  Directional Component 

 
The topological component cannot be built around any combination of Allen relations. This is explained in 

Section 3.1. Section 3.2 shows how some numeric values are extracted from the Allen F-histograms associated 

with the object pair (A,B). In particular, satisfactory indices are attached to the allowed combinations of Allen 

relations. Finally, Section 3.3 addresses the process of deriving the natural language description LAB from the 

extracted values. Note that first definitions of the concepts presented in Sections 3.1.2 and 3.2.1 were given in 

Wawrzyniak et al. (2004). These concepts are here revisited and refined.  

3.1 Allowed combinations of Allen relations 
 

As shown in Section 3.1.1, the linguistic description L
AB

 actually relies on only eight Allen relations. Moreover, 

its topological component cannot be built around any combination of these eight relations. This is explained in 

Section 3.1.2. 
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3.1.1 Reorientation.   Consider two segments I and J of an oriented line of direction . If I is after J in 

direction , then I is before J in the opposite direction + . We say that < is the reorientation of > (Schlieder 

1995). The two Allen relations embed different ordinal information, but they embed the same topological 

information (both represent disjoint). m and mi, o and oi, s and f, fi and si are other reorientation pairs. d is the 

reorientation of itself (if I contains J in direction , then I still contains J in the opposite direction + ). The same 

applies to = and di. For the purpose of linguistic description generation, the focus is given to topological 

information (in the topological component of L
AB

). Only eight Allen relations (say, <, m, o, s, fi, d, = and di ) 

need, therefore, to be considered. Ordinal information is not ignored, but it is assigned less importance and 

handled separately (in the directional component of L
AB

). This is consistent with Knauff’s results (1999). His 

experiments on the conceptual cognitive adequacy of Allen relations support the idea that topological 

information and ordinal information are represented separately in human memory, and that the former is more 

important than the latter (it is less consciously encoded and, therefore, more easily remembered). Reorientation 

reflects in the Allen F-histograms through the following equalities (some of which are well illustrated in figure 

4(a)). For any : F>
AB( ) = F<

AB( + ) , FmiAB( ) = FmAB( + ) , FoiAB( ) = FoAB( + ) , FfAB( ) = FsAB( + ) , 

FsiAB( ) = FfiAB( + )  and FdAB( ) = FdAB( + ) , F=
AB( ) = F=

AB( + ) , FdiAB( ) = FdiAB( + ) . In other words, 

only eight Allen F-histograms are independent of each other. The other five need not be computed. Moreover, 

the Fd , F=  and Fdi -histograms are periodic with period .  

3.1.2 Coherent sets.   Obviously, we cannot expect the linguistic expression L
AB

, which relies on the sole 

Allen relations, to perfectly describe the topological relationships between A and B. These objects are arbitrarily 

complex 2-D objects, not aligned segments, and even a human observer might have difficulty describing the 

configuration. At the very least, we should allow L
AB

 to be built around more than one Allen relation. As shown 

in figure 4(a), different directions in space may yield different relations. Furthermore, different relations might 

coexist along the same direction. Here, however, we must be careful. Consider the following descriptions: ‘A 

mostly meets but somewhat overlaps B’, ‘A contains and is before B’, ‘A mostly overlaps, is somewhat before, 
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partially meets, and is marginally equal to B’. The first one sounds coherent, since it is easy to picture such 

objects A and B. The second one involves semantically contradictory relations and goes against intuition. As for 

the last expression, even if it is true to the actual relationships between the objects, it feels somewhat 

overwhelming. When one starts reading the sentence, one begins to build a mental picture of the objects being 

described. By the time one is finished reading the sentence, however, one no longer has a clear picture of what 

the relationships between the objects actually are. We would like to strike a balance between simplification and 

detail. Our description should relate the most meaningful information while leaving out superfluous and 

potentially overwhelming detail. Let us formalize this. 

As explained in Section 3.1.1, the Allen relations that best represent the spatial relationships between the 

objects are selected from A  = {<, m, o, s, fi, d, =, di}. A set c of Allen relations is coherent if and only if c C, 

where C is some subset of the power set of A . The relations within c are then considered not to semantically 

contradict each other and might be used together in a linguistic description without overloading it with information. 

For example, assume: 

 C = r A’ {{r}} (1) 

 
 
The only coherent sets are the eight singletons {<}, {m}, {o}, etc. In other words, it is considered that a coherent 

description cannot involve more than one Allen relation. The expression ‘A starts B’ is a possible output of the 

system, while ‘A mostly meets but somewhat overlaps B’ is not. As stated previously, such a choice might prove 

too restrictive for adequately describing the relationships between complex 2-D objects. Here is another option: 

 
 C = r A’ {{r}}  {{r, r'} A' | r,r' = 1}. (2) 

 
 

r,r' denotes the length of the shortest path, in the graph of figure 2, between the Allen relations r and r'. We have 

m,m =0, m,o =1, m,s  =2, etc. The set C now contains all singletons and all pairs of neighbour relations {<,m}, 

{m,o}, {o,s}, etc. ‘A starts B’ and ‘A mostly meets but somewhat overlaps B’ are possible outputs of the system, 

whereas ‘A contains and is before B’ is not. Note that through Knauff’s experiments (1999), Freksa’s conceptual 
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neighbourhood theory did not appear to be cognitively relevant. At the same time, these experiments do not 

actually provide arguments for or against Eq. 2. Further cognitive investigation will be needed to determine the 

most appropriate set of coherent sets. In the remainder of the paper, C is defined as in Eq. 2. This choice 

prevents the generated linguistic descriptions from being overloaded with information. It is also compatible with the 

fact that, usually, people do not combine more than two spatial prepositions when translating visual information 

into natural language descriptions (Retz-Schmidt 1988). 

3.2 Numeric values extracted from the Allen F-histograms 
 

Which Allen relations best represent the spatial relationships between the objects A and B? A winning coherent 

set c0 must be selected from C (Section 3.1.2). In Section 3.2.1, we strive to quantify how well a given coherent 

set c represents the relationships between the objects in a given direction . We define local satisfactory indices 

c( ) and, from then, in Section 3.2.2, global satisfactory indices sc. The latter are used to find the ‘best’ 

coherent set c0 and answer the question above. In Section 3.2.3, we turn our attention to directional information. 

In particular, for each relation r in c0, we try to determine the direction r where r is most prominent. The 

linguistic description L
AB

 will be derived from all these numeric values, c( ), sc, r, etc. which are extracted 

from the Allen F-histograms.  

3.2.1 Local satisfactory indices.   In this section, the focus is on a specific direction  (hence the adjective 

‘local’). Assume the topological relationships between the objects along  are represented by the Allen relations 

in some coherent set c. The purpose of a local satisfactory index, c( ), is to indicate how satisfactory this 

representation is. First, consider a relation r, its reorientation r  (Section 3.1.1), and the quantity vr( ) defined as 

follows: 

 r  = r      vr( ) = FrAB( ) /  r’ A Fr'AB( ) 

r   r      vr( ) = [FrAB( )+Fr 
AB( )] /  r’ A Fr'AB( ) 

 

(3) 
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Remember that r and r  represent the same topological relation (Section 3.1.1). For instance, before (<) and after (>) 

represent disjoint ; meets (m) and met by (mi) represent adjacent ; contains (di) is its own reorientation and represents 

itself. The values v< ( ), vm ( ) and vdi ( ) can therefore be interpreted as the degrees of truth of the propositions ‘A and 

B are disjoint in direction ’, ‘A and B are adjacent in direction ’ and ‘A contains B in direction ’, respectively. We 

now can define local satisfactory indices in a very simple way:  
 

 c( ) =  r c vr( ). (4) 
 

c( ) is a number between 0 and 1. The value 1 is reached when the only Allen relations present along  are the 

relations in c (and their reorientations). These are desirable properties. Assume, however, c is {<} and v< ( )=0.7. It 

seems reasonable that {<}( ) should be higher if the relation before coexists with meets (vm ( )=0.3) than if it 

coexists with contains (vdi ( )=0.3), which lies further from meets on the conceptual neighbourhood graph (figure 

2). Equation 4 does not make this distinction. In both cases, {<}( ) is assigned the value 0.7. In the remainder of 

the paper, we adopt the following definition: 
 

 c( ) = max {0,  r c vr ( )   r' A' c [ c,r' ( ) /4] vr'  ( )} (5) 

where      c,r' ( ) = [ r c vr ( ) r,r'] / r c vr ( ). 
 

r,r' is the distance between r and r', as defined in Section 3.1.2, while c,r' ( ) is a weighted average distance 

between r' and the relations in c. In Eq. 5, the number 4 corresponds to the maximum possible value for r,r' and 

c,r' ( ). The desirable properties mentioned above still hold. Moreover, any r' A' c such that vr'  ( ) > 0 leads to a 

decrease of c( ), which becomes more pronounced as the distance between r' and c increases. c( ) 0 is 

however guaranteed if  r c vr ( ) > 0.5. Finally, c( ) is continuous with respect to all the vr ( ) values, and a 

continuous transition between coherent sets is achieved: c' ( ) = c( ) if c' and c are two coherent sets such that  

c' = c {r' } and vr'  ( ) = 0.  
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3.2.2 Global satisfactory indices.   The purpose of a global satisfactory index, sc, is to measure the degree to 

which the Allen relations in some coherent set c satisfactorily represent the spatial relationships between the 2-D 

objects at hand. Let c0 be the coherent set that ‘best’ represents these spatial relationships. The idea is that c0 

should give the highest index: 

 sc0
 = maxc C sc . (6) 

 

The simplest way to define sc is to rely on local satisfactory indices (Section 3.2.1), as follows: 

 
 sc =  max  c( ) . (7) 
 

Here, max can be interpreted as a fuzzy existential quantifier and sc as the degree of truth of the proposition 

‘there exists at least one direction along which the relations in c satisfactorily represent the topological 

relationships between the objects’. Assume, however, the relations in c are the only ones present along some 

direction 0 (i.e. c( 0) = 1). It seems reasonable that the global satisfactory index should be higher if the objects 

heavily interact along 0 than if they barely interact along 0. In the latter case, a linguistic description built around 

the relations in c would be of little value. Equation 7 does not make this distinction. In both cases: sc = 1. Hence 

this second definition, 

 sc = max  min{ c( ), i( )}, (8) 
 

where i( ) denotes the normalized object interaction in direction : 

  

 i( ) = [ r A F r  
A     

  
B
( )] / max  r A F r  

A     
  
B
( ). (9) 

 

Contrary to r A F r  
A     

  
B
( ), which represents an area (Section 2), i( ) belongs to the interval [0,1]. A value of 1 

indicates that the object interaction is maximal along . A value of 0 indicates that the objects are not involved in 

any Allen relations along . In Eq. 8, min can be interpreted as a fuzzy conjunction and sc as the degree of truth 

of ‘there exists at least one direction along which: the objects heavily interact and the relations in c satisfactorily 

represent the topological relationships between the objects’. Other fuzzy conjunctions than min could be used. In 

particular, one might find the algebraic product a better choice: 
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 sc = max  c( )  i( ). (10) 
 

 

r A FrAB( ) is a factor of i( ) (Eq. 9) while 1 / r A FrAB( ) is a factor of c( ) (Eqs. 5 and 3). The sum 

r A FrAB( ) therefore cancels out of the product c( )  i( ). It could be objected that max and the algebraic product 

are not dual operators; the De Morgan laws are not satisfied (e.g. see Klir and Yuan 1995). However, there is no 

reason here to force duality. As pointed out by Trillas (2005), duality is not always desirable, especially when 

linguistic soundness comes into play. In Eq. 10 as in Eqs. 7 and 8, the focus, in the end, is given to a single direction. 

According to all three equations, sc = 1 if there exists some 0 such that c( 0) = i( 0) = 1 (i.e. such that the relations in c 

are the only ones present along 0 and the object interaction is maximal along 0). Is this property desirable? 

Assume, for instance, that 0 is 0, and that for any direction  between 10 and 350 degrees the relations in c are not 

present at all while the relations in another coherent set c’ largely dominate. A linguistic description built around the 

relations in c might not be very satisfactory. A way to get around this is to define sc as follows: 
 
 
 sc = [  

+
   

   c( )  i( ) d  ] / [  
+
   

   i( ) d  ]. (11) 
 

 

Equation 7 makes it particularly easy for sc to be 1. Equation 11 makes it particularly difficult: sc  1 if there exists 

some direction  such that c( )  1 and i( )  0 (i.e. such that the relations in c are not the only ones present along ). 

In the remainder of the paper, sc is defined as in Eq. 10, which constitutes a compromise. Note that in Eq. 11 the 

index sc is defined as a weighted average of the c( ) values, while in Eq. 7 it is defined using max, the upper-bound 

of all averaging operations. In future work, other averaging operations will be investigated.  

3.2.3 Directional information.   The Allen relations that will appear in the linguistic description LAB are the 

elements of the winning coherent set c0 (Section 3.2.2). Assume c0 is {m,o} and the topological component of 

LAB is ‘A mostly meets but somewhat overlaps B’. Where does A meet B? Where does it overlap B? Let r be an 

element of c0 and let ar( ) be the degree of truth of the proposition ‘direction  is the direction where A r B is 

most true’. The direction r where r is most prominent satisfies: 
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 ar( r) = max  ar( ). (12) 

 

The simplest way to define ar( ) is as follows: 
 

 

 ar( ) = F  r  
A     

 
B
( ) / max  F  r  

A     
 
B
( ). (13) 

 
 
This equation, however, displays a complete lack of consideration for the directions where r is present to a lesser 

or equal degree. In Matsakis et al. (2001), the degree of truth of the proposition ‘A is in direction  of B’ was 

extracted from the force histogram associated with (A,B). The authors proceeded by imposing physical 

considerations on the histogram and distinguishing between effective, compensatory and contradictory forces. 

The aim was to build, around directional relations, an automated linguistic description of the relative position 

between two objects. Here, ar( ) is extracted from F  r  
A     

 
B
 using exactly the same technique. Assume A meets B 

precisely to the west (i.e. the eastern part of A meets the western part of B; the Allen relation m holds when 

looking in direction =0, from west to east). Then, when computed as in Matsakis et al. (2001), the value am(0) 

is high (and Eq. 12 gives m=0). Now, assume A meets B not only to the west, but to the northwest and the 

southwest as well. Then, am(0) is low (but is still the highest am( ) and, again, m=0). If ar( ) was defined by Eq. 

13, the degree of truth am(0) would be high in both cases, and no distinction could be made.  

3.3 From numeric values to words 
 

So far, we have discussed the extraction of numeric values from Allen F-histograms. In this section, we turn our 

attention to converting these values into words. The Allen relations that will appear in the linguistic description 

LAB are the elements of the winning coherent set c0. For instance, if c0 = {m,o}, the topological component of LAB 

might be ‘A mostly meets but somewhat overlaps B’, or ‘A meets but marginally overlaps B’. The most 

appropriate adverbs and other approximate terms will be determined and modelled in the framework of fuzzy set 

theory. Fuzzy set theory is an obvious choice because of its links to natural language. Moreover, Allen F-

histogram computation is based on the fuzzification of Allen relations and longitudinal sections. Finally, there is 
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cognitive evidence regarding the fuzzy nature of approximate linguistic terms in the description of topological 

relationships (Zhan 2002). In Zhan (2002), these terms are modelled by fuzzy sets determined through human 

subject experiments. At this stage of our work, we have chosen to trust our own intuition and empirically model 

them using standard trapezoidal fuzzy sets. Each trapezoid is symmetrical (unless truncated), and its major basis 

is twice the length of its minor basis. Trapezoidal fuzzy sets have been widely used in the literature because of 

their computational simplicity and efficiency. Moreover, most practitioners have found that they are adequate for 

developing approximate solutions (Yen and Langari 1999). The subsections below are in the spirit of Zadeh's 

idea (1996, 1999) of ‘computing with words’ a methodology which involves a fusion of natural languages and 

computation with fuzzy variables. Note, however, that Zadeh’s focus is on reasoning with perceptions that are 

expressed in words; it is not on translating (visual) perceptions into words, as in the present paper. 

3.3.1 Topological component.   The winning coherent set c0 contains at most two elements (Section 3.1.2, 

Eq. 2) and satisfies sc0
 = maxc C sc, where sc = max  c( ) i( ) (Section 3.2.2). Actually, the Allen relations in c0 best 

represent the topological relationships between A and B along some direction 0, the direction of major object 

interaction. 0 is determined at the same time as c0. The pair (c0, 0) is defined by:  

 
 c0

( 0)  i( 0) = max ,c c( )  i( ). (14) 
 
 
Assume (c'0  ,  '0  ) and (c"0   , "0   ) both maximize c( )  i( ). If c'0   and c"0    contain the same number of elements, the 

winning pair is chosen randomly. If c'0   has fewer elements, (c'0  ,  '0  ) wins against (c"0   , "0   ) (which would lead to a 

less concise description). The typical case is when c"0    = c'0   {r'} and "0    =  '0  , with r' such that vr' (  '0 ) = 0. Since the 

transition between coherent sets is continuous (Section 3.2.1): c 
0"   

 (  0"  )  i(  0"  )  =  c 
0'  
(  0' )   i(  0' ) . In the end, the 

winning pair (c0, 0) satisfies: r c0, vr( 0)>0.  

If c0 ={r0} and sc0
=1, then the topological component of LAB takes the form ‘A perfectly r0 B’. If c0 ={r0} 

and sc0
 1, it takes the form ‘A r0 B’. Finally, if c0 ={r0 , r1}, with vr0( 0)  vr1( 0), then it takes the form 

‘A [ adverb0 ] r0 connective  [ adverb1 ] r1 B’. As indicated by the brackets [ ], adverbs may or may not be 
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present in this expression. The idea is to reflect the predominance of r0 over r1 along 0, which can be 

quantified as: 

 
 p = vr0

( 0) / [vr0
( 0) + vr1

( 0)]  [0.5;1) . (15) 
 
 
Figure 5 shows how the adverbs and connective are chosen depending on the value of p. Assume, for instance, 

that r0 is < and r1 is m. If p is high, ‘A is before but marginally meets B’. If p is medium, ‘A is mostly before but 

somewhat meets B’. If p is low, ‘A is before as much as it meets B’. 

 
 

0 

0 . 5 p2 p1 
1 

0 . 5 

1 

low medium high 

p 

 
Figure 5.    Rules for the generation of the topological component of the description. 

In our experiments, p2 =0.63 (midpoint between 0.5 and 0.75) and p1 =0.88 (midpoint between 0.75 and 1). 

 
 

3.3.2 Self-assessment component.   The topological relationships between two arbitrarily complex 2-D 

objects cannot always be satisfactorily described through a concise linguistic expression. The self-assessment 

component of LAB gives the user a measure of confidence in the topological component of the description. This 

self-assessment component takes the form: ‘The description is [ adverb ] adjective .’ Figure 6 shows how the 

adverb and adjective are chosen depending on the value of sc0
, the global satisfactory index of the winning 

coherent set c0. If sc0
 is medium high, for instance, then the self-assessment component of LAB is: ‘The 

description is rather satisfactory.’ Note that a special action is taken when sc0
 is low. The system then considers 

that no pertinent linguistic description relying on the sole Allen relations can be given. All three components of 

LAB are discarded and replaced by the message ‘Only unsatisfactory descriptions could be found.’ 

p 

low medium high 

— 

as much as 

— 

mostly 

but 

somewhat 

— 

but 

marginally 
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low 

0 

s3 s2 s1 
1 

0 . 5 

1 

medium 
low 

 

sc0 

high 

 

medium 

high 

 

0 
 

Figure 6.    Rules for the generation of the self-assessment component of the description. 

In our experiments, s3 is 0.5, s2 is 0.67 (midpoint between s3 and s1) and s1 is 0.83 (midpoint between s2 and 1). 

 
 

3.3.3 Directional component.   The third component of the linguistic description gives a directional estimate 

for each Allen relation r in the set c0  {d,=, di} (which might be empty). The relation = is not considered. 

‘Where does A meet B?’ sounds a reasonable question. ‘Where is A equal to B?’ does not. This stems from the 

fact that the reorientation of = is itself (Section 3.1.1). The same applies to d and di. The estimate associated with 

r usually takes the form: ‘A r B [ adverbr ] to the r
  
’, as in ‘A overlaps B loosely to the northwest’. Note here 

that ‘to the northwest’ means ‘to the northwest of the referent B’. In other words, A overlaps the northwestern 

part of B, and the Allen relation o holds when looking in direction  = 45° (from northwest to southeast). 

Figure 7 shows how the adverb is chosen depending on the value of ar( r) (Section 3.2.3). The symbol r
  
 refers 

to the compass point (N, S, E, W, NE, NW, SE, SW, NNE, NNW, SSE, SSW, ENE, WNW, ESE or WSW) that 

coincides (roughly) with the angle r+ . Assume, for instance, that c0 ={s, d } and s =20°. The system then 

produces a single directional estimate. If as( s) is high, the third component of the linguistic description is ‘A 

starts B to the west-southwest’. If as( s) is medium high, ‘A starts B primarily to the west-southwest’. Note that a 

special action is taken when ar( r) is low, i.e. when there exists much directional ambiguity as far as the relation 

r is concerned. The expression ‘A r B barely to the r
   

’ is discarded and replaced by ‘A r B in multiple 

directions’.  

 

sc0
 

low* medium low medium high high 

— 

unsatisfactory 

rather 

unsatisfactory 

rather 

satisfactory 

— 

satisfactory 
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low 

0 

a3 a2 

 
a1 

1 

0 . 5 

1 

medium 
low 

 

ar( r) 

high 

 

medium 

high 

 

0 
 

Figure 7.    Rules for the generation of the directional component of the description. 

In our experiments, a3 is 0.5, a2 is 0.67 (midpoint between a3 and a1) and a1 is 0.83 (midpoint between a2 and 1). 

 

4 Experiments 

 

For our experiments, we used one training dataset and three test datasets. Each dataset is composed of a few 

image sequences, and each sequence of a few raster images. The images in the third test dataset correspond to 

real, Doppler radar data. The other images represent synthetic data. For each object pair, 360 directions were 

considered when computing the Allen F-histograms. In the following figures, the argument A is shown in light 

grey, the referent B in dark grey, and areas of intersection in mid-grey. 

4.1 Training dataset 
 

Image sequences like those in figure 8 can be used to tune the parameters defining the linguistic values. Each 

sequence is such that only one component of the description changes from one image to another. The first 

sequence, figure 8(a), shows variations of the topological component (tuning of p1 and p2, Section 3.3.1). Figure 

8(b) shows variations of the self-assessment component (tuning of s1, s2 and s3, Section 3.3.2) and figure 8(c) 

variations of the directional component (tuning of a1, a2 and a3, Section 3.3.3). The first and last images of each 

sequence depict limit configurations. For instance, if the argument A was slightly bigger in figure 8(a1), then the 

corresponding description would be as in figure 8(a2). If A was slightly smaller in figure 8(a4), the correspond-

ing description would be as in figure 8(a3). The second and third images of each sequence, however, depict 

middle configurations. The description for figure 8(a2) would not change if A was slightly smaller or bigger. In 

 

ar( r) 

low* medium low medium high high 

barely loosely primarily — 
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A is perfectly contained by B. 

The description is satisfactory. 

 
A is contained by 

but is marginally equal to B. 
The description is satisfactory. 

 

 
A is mostly contained by 

but is somewhat equal to B. 
The description is satisfactory. 

 
A is contained by 

as much as it is equal to B. 
The description is satisfactory. 

 

 
 

A is before B. 
The description is satisfactory. 

A is before B in multiple 
directions. 

 

 

 
 

A is before B. 
The description is 
rather satisfactory. 

A is before B in multiple 
directions. 

 

 

 
 

A is before B. 
The description is 

rather unsatisfactory. 
A is before B in multiple 

directions. 

 

 
 

 

Only unsatisfactory 

descriptions could be found. 

 
A is perfectly before B. 

The description is satisfactory. 
A is before B to the east. 

 
A is perfectly before B. 

The description is satisfactory. 
A is before B primarily 

to the east. 

 

A is perfectly before B. 
The description is satisfactory. 

A is before B loosely 
to the east. 

 
A is perfectly before B. 

The description is satisfactory. 
A is before B in multiple 

directions. 
 
 

Figure 8.   Training dataset.  In each sequence, (a), (b) and (c), object B is a disk with constant diameter.  

(a) Object A is the smaller disk. Its diameter increases. The topological component of the description varies accordingly. 

(b) Object A is the union of the ring and the small disk, whose diameter increases. The self-assessment component varies accordingly. 

(c) Object A is the crescent. Its shape changes. The directional component varies accordingly.  

 

 
the second sequence, figure 8(b), the argument A is the union A1 A2 of a ring A1 (around B) and a disk A2 (inside 

B). When the diameter of A2 increases, the system gets confused and is not quite satisfied with the topological 

component. The reason is that we have chosen not to consider {<, d } a coherent set ({<, d } does not belong to 

C, see Eq. 2). When A2 gets too big, the system gives up and admits its inability to provide a useful description 

(figure 8(b4)). For our experiments, the parameters defining the linguistic values were set as in figures 5-7, by 

rule of thumb. The three image sequences were used for validation only. No fine-tuning was performed. 

(a1) (a2) (a3) (a4) 

(b1) (b2) (b3) (b4) 

(c1) (c2) (c3) (c4) 
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4.2 Test dataset 1 
 

Figure 9 shows pairs of disjoint or adjacent objects. In the first image sequence, figure 9(a), the argument A and 

referent B can be thought of as simple 2-D extensions of aligned segments. In (a1), the winning coherent set c0 is 

{m}, and ‘A perfectly meets B’. If a single column of pixels is introduced between A and B, as in (a2), then 

c0 ={<, m}, and ‘A meets but is marginally before B’. One might believe the intermediate description ‘A meets B’ 

should be generated here, and the relation before should only appear when A moves farther away from B. This 

can be easily achieved. Remember that if c0 ={r0 , r1} then ‘A [ adverb0 ] r0 connective  [ adverb1 ] r1 B’, where 

adverbs and connective are chosen depending on the value of p (Section 3.3.1). One might want to modify the 

set of linguistic values (figure 5) and add the following rule: if p is very high then ‘A r0 B’. In (a3), ‘A is before 

as much as it meets B’. How far apart the two objects need to be before this description is generated depends, of 

course, on the way the Allen relations are fuzzified (Section 2). A similar comment applies to (a4). In the second 

image sequence, figure 9(b), the argument is of variable size and touches the referent in various ways. (b1) 

should be compared with (a3). In both cases, but for totally different reasons, ‘A is before as much as it meets B’. 

Figure (b3) clearly shows the advantage of having independent directional estimates. Figure 9(c) also makes a 

good argument for independent estimates. Although the directional relationships are fairly complex, the 

topological relationships are very simple, and the topological component is always judged to be satisfactory. The 

linguistic descriptions generated by the system are, of course, invariant to translation and scaling. The last 

sequence, figure 9(d), illustrates the fact that the topological and self-assessment components are also invariant 

to rotation (compare (d1) with (a1), (d2) with (a2) and (d3) with (d4)). Moreover, when permuting the objects, 

all components are affected in a predictable and logical manner. If A contains B, for instance, then B is 

contained by A. If A is before B to the south, then B is before A to the north (compare (d3) with (c3)). 
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A perfectly meets B. 
The description is satisfactory. 

A meets B to the east. 

 

 
 

A meets but is marginally before B. 
The description is satisfactory. 

A meets B to the east. 
A is before B to the east. 

 

 
 

A is before as much as it meets B. 
The description is satisfactory. 

A is before B to the east. 
A meets B to the east. 

 

 

 
 

A is perfectly before B. 
The description is satisfactory. 

A is before B to the east. 

 

 
 

A is before as much as it meets B. 
The description is satisfactory. 

A meets B to the west. 
A is before B to the west. 

 
A is mostly before 

but somewhat meets B. 
The description is satisfactory. 

A is before B 
to the west-southwest. 

A meets B to the southwest. 
 

 
A is mostly before 

but somewhat meets B. 
The description is satisfactory. 

A is before B to the west. 
A meets B to the south. 

 

A perfectly meets B. 
The description is satisfactory. 

A meets B to the southwest. 

 

 
 

A is before but marginally meets B. 
The description is satisfactory. 

A is before B 
to the north-northeast. 

A meets B to the northeast. 

 

 

 
 

A is before but marginally meets B. 
The description is satisfactory. 

A is before B 
primarily to the east. 

A meets B to the northeast. 

 

 
 

A is before but marginally meets B. 
The description is satisfactory. 

A is before B 
in multiple directions. 

A meets B to the north-northeast. 

 

 
 

A perfectly meets B. 
The description is satisfactory. 

A meets B in multiple directions. 
 

 

 
 

A perfectly meets B. 
The description is satisfactory. 

A meets B to the south-southeast. 

 

 
 
 

A meets but is marginally before B. 
The description is satisfactory. 

A meets B to the south-southeast. 
A is before B to the south-

southeast. 

 

 

 

 

 

 

 

A is before but marginally meets B. 
The description is satisfactory. 

A is before B in multiple 
directions. A meets B 

to the south-southwest. 

 

 

 

 

 
 

A is before but marginally meets B. 
The description is satisfactory. 

A is before B 
in multiple directions. 
A meets B to the west. 

 
 

Figure 9.   Test dataset 1. 

 

(a1) (a2) (a3) (a4) 

(b1) (b2) (b3) (b4) 

(c1) (c2) (c3) (b5) 

(d1) (d2) (d3) (d4) 

A 

B 

A 

B 

A B 

B A 
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4.3 Test dataset 2 
 

The second test dataset, figure 10, focuses on intersecting objects. In the first image sequence, figure 10(a), the 

argument moves ‘into’ the referent. In (a1), the only Allen relation present is before. In (a2), overlaps 

dominates. meets occurs due to the fuzzification of m and o. In (a3), the argument mostly starts the referent, but 

its eastern part is shifted downward into the referent, hence the presence of during. Figure 10(b) is pretty much 

the same sequence. The presence of the hole in the referent has little impact on the descriptions. The most 

notable differences concern (b4). In (b4), the direction of major object interaction lies near /4 (looking from the 

southwest). The interaction of the argument with the northern edge of the hole causes a small amount of the 

relations overlaps and starts to appear. starts is coherent with during and it is included in the description. 

overlaps is not. It contributes to the lowering of the global satisfactory index of the coherent set {s,d}. The 

self-assessment component therefore drops to ‘rather satisfactory’. In the next sequence, figure 10(c), the 

argument seems to ‘envelop’ the referent along its border. In (c2), (c3) and (c4), equals gains more and more 

importance. Since we have chosen not to consider {s,=,o} a coherent set, {s,=} competes (and wins) against 

{s,o}. The rivalry, however, affects the self-assessment component. A similar phenomenon can be observed in 

figure 10(d). In (d3), for instance, the description, although fairly reasonable, is judged to be ‘rather 

unsatisfactory’. The conflict here lies in choosing between the coherent sets {<, m} and {m,o}. The objects do not 

overlap much along the (horizontal) direction of major object interaction, and meets coexists with before and 

overlaps due to the fuzzification of the Allen relations. Had {<, m, o} been allowed to enter the lists, a satisfactory 

description (at least from the system’s point of view) could have been generated. In (d4), the objects overlap more 

and the presence of meets diminishes. Since no coherent set contains both before and overlaps, the competition 

between these relations is fierce, and the system gives up. The last image sequence, figure 10(e), also poses 

problems for the system. Consider (e3). There is no conflict along the horizontal and vertical directions, but the 

interaction index (Eq. 9) is rather low. Object interaction is maximum along the diagonal directions, but conflict 

is high. In the end, 0 = 90°, c0 ={d } and sc0
= i( 0) = 0.67. The topological component of the description com- 

 



 25

  

 
 

A is perfectly before B. 
The description is satisfactory. 

A is before B to the north-
northwest. 

 
 

A mostly overlaps 
but somewhat meets B. 

The description is satisfactory. 
A overlaps B to the north. 

A meets B to the north-northwest. 
 

 
 

A mostly starts 
but is somewhat contained by B. 
The description is satisfactory. 

A starts B to the north-
northwest. 

 
 

A is perfectly contained by B. 
The description is satisfactory. 

  

 
 

A is perfectly before B. 
The description is satisfactory. 

A is before B to the north-
northwest. 

 

 
 

A mostly overlaps 
but somewhat meets B. 

The description 
is rather satisfactory. 

A overlaps B to the north. 

A meets B to the north-northwest.  

 

 

 
 

A mostly starts 
but is somewhat contained by B. 
The description is satisfactory. 

A starts B to the north-
northwest. 

 

 
 

A is contained by 
but marginally starts B. 

The description 
is rather satisfactory. 

A starts B to the south. 

 

 
 

A starts 
but marginally overlaps B. 

The description is satisfactory. 
A starts B to the northeast. 

A overlaps B to the northeast.  

 

  

 
 

A mostly starts 
but is somewhat equal to B. 

The description 
is rather satisfactory. 

A starts B to the north. 

 

 
 

A mostly starts 
but is somewhat equal to B. 

The description 
is rather satisfactory. 

A starts B in multiple directions. 

 

 
 

A starts 
as much as it is equal to B. 

The description 
is rather satisfactory. 

A starts B in multiple directions. 
 

 
A is before 

as much as it meets B. 
The description is satisfactory. 

A is before B to the west. 
A meets B to the west. 

 

 
A is mostly before 

but somewhat meets B. 
The description 

is rather satisfactory. 
A is before B to the west. 

A meets B to the west.  

 

 

 

A is mostly before 
but somewhat meets B. 

The description 
is rather unsatisfactory. 

A is before B to the west. 
A meets B to the west. 

 

 
 
 

Only unsatisfactory 

descriptions could be found. 

 

       
 

 
 
 

 
Figure 10.   Test dataset 2. 

(a1) (a2) (a3) (a4) 

A is perfectly contained by B. 
The description 

is rather unsatisfactory. 

A is perfectly finished by B. 
The description 

is rather satisfactory. 
A is finished by B to the west. 

A perfectly starts B. 
The description 

is rather unsatisfactory. 
A starts B to the south. 

(b1) (b2) (b3) (b4) 

(c1) (c2) (c3) (c4) 

(d1) (d2) (d3) (d4) 

(e1) (e2) (e3) 

A 

B 

A 

B 

A B 

B A 

A 

B 
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pletely disregards the portions of the argument lying outside of the referent. The system realizes that, but 

its self-assessment is obviously not harsh enough. One might want to redefine the global satisfactory index, as 

hinted in Section 3.2.2, or to modify the linguistic values associated with sc0
 (figure 6). Various image sequences 

can be used to fine-tune the corresponding parameters (e.g. see figure 8(b)). Another alternative is to make use 

of ancillary information. For instance, if the degree of subsethood of A in B (often defined by |A B|/|A|) is low, 

then A cannot be ‘perfectly contained by’ B.  

4.4 Test dataset 3 
 

Figure 11 represents a sequence of Doppler radar images from Detroit/Pontiac National Weather Service 

(http://www.crh.noaa.gov/dtx/mayfly.php). The sequence, captured on June 26, 2001, shows a mayfly aerial 

courtship over St. Clair County, Michigan. In (a1), only the relation before is present. The mayfly swarm 

(argument object) is born outside of the county (referent). In (a2), the swarm becomes a disconnected object. 

Some of the smaller fragments meet the referent at the western border. In (a3), the swarm has grown 

considerably and moved over the county. The relation during clearly dominates along  = /2, which is the 

direction of major object interaction. starts is present to various degrees looking from the southwest, southeast, 

northeast… This is reflected in the directional estimate. A smaller portion of the swarm lies just outside the 

southwestern part of the county and is left out of the description. In (a4), the swarm has contracted towards the 

eastern border of the county. In (a5), it breaks apart into numerous fragments. before, meets, and overlaps are 

present to a roughly equal degree. Since we have chosen not to consider {< , m , o} a coherent set, {< , m} 

competes (and wins) against { m , o}. The rivalry, however, severely affects the self-assessment component. 

5 Conclusion 

 

A system for generating linguistic descriptions of the topological relationships between two-dimensional objects 

has been introduced. The objects need not be convex, nor connected, and they may have holes in them. The de-

scriptions are human-like in structure and richness of language. The system makes use of approximate terms and 
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A is perfectly before B. 
The description is satisfactory. 
A is before B to the southwest. 

                  
 

A is before but marginally meets B. 
The description is 
rather satisfactory. 

A is before B to the southwest. 
A meets B to the west-southwest. 

 

 

          

 
 

 

 
 

 

 

 

 
A is before 

as much as it meets B. 
The description is 

rather unsatisfactory. 
A is before B to the southwest. 

 A meets B to the south-southwest. 

 

Figure 11.   Test dataset 3. 

 

 

operates at a fine level of granularity, which involves way more than just one or two topological relationships. 

To our knowledge, it is the first system to combine these characteristics. The descriptions are derived, through 

simple fuzzy rules, from numeric values extracted from Allen F-histograms. Each linguistic expression is built 

around the Allen relations that best represent the spatial relationships between the objects. A self-assessment 

component indicates to what extent the essence of these relationships has been successfully captured. The system 

also gives the directions along which the Allen relations mentioned in the description are most prominent.  

As demonstrated with numerous examples, the system performs well in a large number of cases and 

produces intuitive descriptions. This, of course, is a rather subjective statement. Two human subjects may 

perceive the same spatial concept differently, and by implication, describe it differently (Mark et al. 1995, 

Robinson 2000, Worboys 2001). The assumption here is that the user is familiar with the building blocks of the 

A is mostly contained by 
but somewhat starts B. 

The description is satisfactory. 
A starts B loosely to the east-southeast. 

A is contained by 
but marginally starts B. 

The description is satisfactory. 
A starts B in multiple directions. 

(a3) (a4) 

(a1) (a2) 

 

(a5) 

A 

B 
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system-generated descriptions, i.e. with the Allen relations. Obviously, the descriptions may not seem intuitive if 

the Allen relations themselves, and the way they are referred to, are not found intuitive. Issues such as the 

cognitive validity of computational and mathematical models of spatial relations, or the appropriateness of the 

names given to these relations, (Knauff 1999, Mark and Egenhofer 1994, Renz et al. 2000, Riedemann 2005) are 

not issues this paper intended to address. However, Knauff’s experiments on conceptual cognitive adequacy tend 

to support the idea of building linguistic descriptions around Allen relations. 

Considering the nature of language and spatial cognition, it is clear that subjectivity cannot be avoided. 

Methods for performance evaluation of systems with linguistic, subjective outputs have yet to be investigated. 

For example, one might want to adapt the system presented here to a prototypical perception, which would have 

to be captured through cognitive experiments involving multiple subjects. For training and validation purposes, 

the semantic similarity between prototypical and system-generated linguistic descriptions would then have to be 

measured. Although there are still few related publications, the need for semantic similarity measures between 

sentences is being increasingly recognized (Li et al. 2006). The procedure just described is far beyond the scope 

of this paper. The most important at this point is that the system can adapt to a given perception, application, 

context, through various mechanisms. The terms (nouns, prepositions, adverbs, adjectives…) can easily be 

changed, and the vocabulary can be expanded or shrunk according to need. The linguistic values in the fuzzy 

rules (such as high, low) can be tuned using calibration image sequences. The transition between two 

neighbouring relations (e.g. before and meets, meets and overlaps) depends on the way these relations are 

fuzzified, and can be redefined. The combinations of Allen relations allowed in a description can be chosen 

freely. Furthermore, a different set of relations could be considered. 

These mechanisms, nonetheless, cannot prevent the system from generating some descriptions that are 

clearly counter-intuitive, less satisfactory than the self-assessment component would have the user believe. 

Several measures have been suggested to remedy the problem. For a given description, the system selects the 

best combination of Allen relations based on the computation of satisfactory indices—which can be defined in 

different ways. Ancillary information can also be exploited. These measures will be explored in future work, and 
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should allow the system to make fewer counter-intuitive statements and provide more insightful descriptions. A 

first attempt in this direction was presented in Wawrzyniak et al. (2005). Misleading descriptions such as those 

in figure 10(e) are detected by incorporating subsethood information into the local satisfactory index. An 

independent module, which does not rely on Allen F-histograms, then produce alternative descriptions of the 

form: ‘The central | southern | western… part of A coincides with the central | southern | western… part of B.’ In 

the case of figure 10(e3), for instance, the module is invoked and outputs ‘The central part of A coincides with 

the central part of B.’  

In Matsakis et al. (2001), the linguistic descriptions were generated exclusively from force F-histograms, 

and they were built around directional relations (is to the right of, is above, is to the left of, is below). Here, they 

are generated exclusively from Allen F-histograms and are built around topological relations (the Allen 

relations). These works show the specificity and limits of each type of histogram, and they show how each one 

can contribute to the generation of natural language expressions that capture the essence of spatial relationships. 

Such results are fundamental for the design of systems combining F-histograms with other sources of 

information. We have mentioned Wawrzyniak et al. (2005), which exploits subsethood ancillary information. 

Wawrzyniak et al. (2006) is an attempt in what can be seen as an opposite direction: the descriptions are built 

around 2-D set relations (is disjoint from, overlaps, includes, is included in, is equal to), and Allen F-histograms 

only provide ancillary information. Having machines that, like humans, can comprehend the organization of 

objects in space, and can reason and communicate linguistically about space, is an ambitious goal. There is no 

doubt in our mind that, ultimately, various sources of information will have to be combined, and various systems 

will have to cooperate. 
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