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Abstract: Natural language descriptions are an important step in bridging the 
gap between numerical representations of spatial data and the human user.  
In this work, we present a system for generating linguistic descriptions  
of the spatial relationships between two-dimensional objects. The most 
pertinent relations for the description are chosen based on a fuzzification of the 
set relations DISJOINT, OVERLAP, SUBSET, SUBSETi and EQUAL.  
A handful of relevant Allen relations is then selected and their Allen  
F-histograms are analysed to extract further topological and directional 
information. The approach is validated using several sets of real and synthetic 
data. 
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1 Introduction 

In recent years, the problem of expressing the spatial relationships between  
two-dimensional objects using natural language has received considerable attention in 
many areas of computer science. The ability to accurately and succinctly describe the 
spatial configurations of objects can enhance applications such as mobile robot 
navigation, target recognition and acquisition, digital medical image diagnostics, 
landmark navigation, image database search and retrieval and numerous GIS 
applications. 

In this paper, we propose a method for generating linguistic descriptions of the 
topological and directional relationships between two objects. The descriptions are based 
on the fuzzification of the set relations DISJOINT, OVERLAP, SUBSET, SUBSETi and 
EQUAL, as well as on information extracted from Allen F-histograms (Matsakis and 
Nikitenko, 2005). The descriptions convey the primary topological relationships between 
the objects and provide directional estimates of where these relations hold true. The paper 
is organised as follows. In Section 2, we survey existing methods of associating linguistic 
expressions with spatial configurations of objects and review the notion of Allen  
F-histograms, which play an important role in the proposed approach. Section 3 deals 
with how the linguistic descriptions are generated. Experimental results can be found in 
Section 4. A conclusion and directions of future work appear in Section 5. 

2 Related work 

2.1 Spatial relationships and natural language 

Several methods have been recently proposed to derive linguistic expressions from 
numerical or symbolic representations of the spatial relationships between objects.  
For instance, a fuzzy rule-based system was proposed by Keller and Wang (2000). Based 
on a method described in Wang and Keller (1997, 1999), some numeric parameters 
characterising spatial relationships were extracted from a segmented scene. A system of 
fuzzy rules then associated natural language descriptions with these numeric values, 
resulting in descriptions such as “There are five missile launchers (1,2,3,6,8). They 
surround a centre vehicle (4) …” or “The roof is right of the tree. The wall is right of the 
tree …” Abella and Kender (1999) represented spatial relationships as fuzzy predicates 
and used them to produce natural language statements about location and space. Their 
system consisted of an image processing module, a fuzzy semantic representation module 
and natural language generation modules. The semantic representation module integrated 
visual information (extracted from the image) with linguistic information (gathered for 
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the test set from human test subjects). The final system was tested on landmark 
navigation in spatial images (the example is ‘set’ in Disney World), generating 
descriptions such as  

“First, find the Chinese Pavilion which is the leftmost one near the German 
Pavilion. Then, find the Norwegian Pavilion, which is the leftmost one next to 
the Chinese Pavilion. The Mexican Pavilion is the topmost one below the 
Norwegian Pavilion.” 

The system was also tested on radiograph images to find abnormal densities, generating 
descriptions such as “The right kidney contains a density which may represent a right 
rental stone”. A system that could analyse spatial relationships in a visual scene and 
connect them to appropriate linguistic descriptions was proposed by Kopp (1994).  
This system extracted the objects from the scene, classified them using a pattern 
recognition neural network and then used a correlation matrix to connect the text to the 
outputs of the network. It produced linguistic descriptions such as “frog under fly”,  
“frog left of cat” or “cat right of frog under fly over dog”. 

Skubic et al. (2002) generated linguistic spatial descriptions from an evidence grid 
map in the context of human-robot dialog. The map was used to represent objects in the 
robot’s environment, and the spatial descriptions were generated using histograms of 
forces (Matsakis, 1998; Matsakis and Wendling, 1999) and a method introduced in 
Matsakis et al. (2001). A linguistic description output by the robot consisted of three 
parts: the primary component (e.g., “the object is in front of me”), the secondary 
component (e.g., “but somewhat to my left”) and the self-assessment component  
(e.g., “the description is satisfactory”). Using R-histograms (Wang and Makedon, 2003), 
Wang et al. (2004) generated fuzzy semantic metadata describing spatial relationships. 
The image was segmented, and R-histograms provided a quantitative representation of 
spatial relationships between image regions. A fuzzy classifier was used for each of the 
four spatial relation pairs ‘left of/right of’, ‘above/below’, ‘near/far’ and ‘inside/outside’. 
The system stopped short of generating complete natural language descriptions of the 
scene. A method that provided linguistic descriptions of topological relationships was 
given by Zhan (2001, 2002). Each object was represented as a fuzzy set (an object with 
fuzzy boundaries). As in Zhan (1997, 1998), the fuzzy membership value of a given 
topological relation between two fuzzy regions was computed based on the 9-Intersection 
model (Egenhofer and Herring, 1994). The results were demonstrated using a single 
topological relation, ‘covers’, and included descriptions such as “Region Q covers 
Region R a little bit” or “Region Q nearly completely covers Region R”. 

A comprehensive system for generating linguistic descriptions of the topological 
relationships between 2-D objects was presented in Matsakis et al. (submitted).  
The system generated descriptions based on the 13 Allen F-histograms (Matsakis and 
Nikitenko, 2005). Although satisfactory descriptions were generally obtained, some 
counter-intuitive descriptions were also produced. The descriptions were based on the 
Allen relations present along a direction of major object interaction. Ultimately, only a 
single direction was considered, and in some cases, important topological information 
was not taken into account. Wawrzyniak et al. (2005) proposed some simple solutions to 
eliminate the counter-intuitive descriptions. In this paper, we revisit the work presented in 
Matsakis et al. (submitted) and Wawrzyniak et al. (2005), and propose a comprehensive 
system which corrects the problems encountered. 
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2.2 Allen F-histograms 

Allen (1983) introduced a set A of 13 mutually exclusive and collectively exhaustive 
relations to represent knowledge about time intervals: A = {<m,o,s,fi,d,eq,di,si,f,oi,mi>}. 
The relations are illustrated on a conceptual neighbourhood graph in Figure 1. One 
possible way to extend Allen relations into the spatial domain was suggested by Matsakis 
and Nikitenko (2005) in the form of Allen F-histograms. 

Figure 1  Conceptual neighbourhood graph of Allen relations 

 

The notion of the F-histogram was first introduced in Matsakis (1998). F-histograms 
include force histograms (Matsakis, 1998; Matsakis and Wendling, 1999) and Allen  
F-histograms (Matsakis and Nikitenko, 2005). Consider a pair of objects (A,B) and an 
Allen relation r. The Allen F-histogram Fr

AB is one possible representation of the position 
of A (the argument object) with regard to B (the referent object). It is a numeric function. 
For any direction θ, the value Fr

AB(θ) is a weight attached to the proposition “A r B in 
direction θ”. This weight is computed by decomposing A and B into pairs of aligned 
longitudinal sections (Figure 2). Thus, the handling of the object pair (A,B) comes down 
to the handling of pairs of longitudinal sections, and the handling of each pair of 
longitudinal sections comes down to the handling of pairs of segments for which the 
Allen relation r can be readily assessed. 

Figure 2  For each direction, the plane is partitioned into a set of parallel lines.  
The intersection of a line and an object is a longitudinal section of that  
object. J1, for instance, is a longitudinal section of B. It consists of one segment.  
I1 is a longitudinal section of A and consists of two disjoint segments: I11 and I12 
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The Allen relations are fuzzified such that any relation r in A is a continuous function 
onto [0,1]. The idea is that if an object is moved slightly, then the Allen F-histograms 
should change equally slightly. Moreover, for any pair (I, J) of segments on an oriented 
line, ∑r∈A r(I, J) = 1. For any pair (I, J) and any r1 and r2 in A, if r1(I, J) ≠ 0 and 
r2(I, J) ≠ 0 then r1 and r2 are direct neighbours in the graph of Figure 1. An illustrative 
example of the fuzzification of Allen relations is presented in Figure 3. 

Figure 3  Fuzzy Allen relations. Here, >(I1,J1) is 1 and mi(I1,J1) is 0; >(I2,J2) and mi(I2,J2) are 
greater than 0 and less than 1 and >(I3,J3) is 0 and mi(I3,J3) is 1 

 

The longitudinal sections are also fuzzified. Thus, if an object is deformed slightly, the 
Allen F-histograms change equally slightly. Fuzzification is achieved such that closer the 
two segments of a crisp longitudinal section, the more the space in between belongs to 
the fuzzified section. When sufficiently close, the two segments are seen, to a  
certain degree, as a single segment. An illustrative example of the fuzzification of 
longitudinal sections is presented in Figure 4. The processing of a pair (Ik,Jk) of 
longitudinal sections, i.e., the computation of r(Ik,Jk), is achieved by processing the α-cuts 
Iαk and Jαk and blending the ,(I J  )ki kjr α α  values appropriately for all α, i and j. 

Figure 4  Fuzzy longitudinal sections. Before fuzzification, the point M does not belong at all to 
I1 = I11 ∪ I12 and N does not belong at all to I2 = I21∪I22. After fuzzification of I1 and I2, 
the point M belongs to I1 to some extent, and N belongs to I2 more than M belongs to I1 

 

Finally, Fr
AB(θ) is a weighted sum of the r(Ik, Jk) values for all k. It is such that 

∑r∈A Fr
AB(θ) measures the object interaction in direction θ. To put it simply, ∑r∈A Fr

AB(θ) 
is the total area of the regions of A and B that are ‘facing’ each other in direction θ 
(Figure 5). Again, a slight change in the object configuration results in a correspondingly 
slight change in the histograms. Continuity is satisfied and, hence, robustness is achieved. 
Should the metric information be judged unimportant, the histograms can be normalised: 
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AB AB AB, F ( ) F ( ) / F ( ).r r ρρε
θ θ θ θ∀   = ∑ A  

Figure 5  ABF ( )rr
θ

∈∑ A
measures to what extent A and B are involved in some spatial relationship 

along direction θ. It is the total area of the dark grey regions 

 

Examples of Allen F-histograms and their normalised counterparts are shown in Figure 6. 
All details pertaining to the computation of Allen F-histograms are presented in 
(Matsakis and Nikitenko, 2005). 

Figure 6  A pair of objects (a) and their corresponding histograms: non-normalised (b) and 
normalised (c). In both (b) and (c), the 13 Allen F-histograms are ‘piled up’ on top of 
each other 

 

Many numerical values can be extracted from a given Allen F-histogram Fr
AB. Here, we 

focus on two of them: the primary direction θr and the directional acuteness ar  
(Matsakis et al., submitted; Wawrzyniak et al., 2005). Put simply, θr is the direction 
where r is most prominent. It is the ‘average’ direction where the relation r occurs.  
The value ar conveys the acuteness of the directional relationship. If ar is high, then the 
relation r occurs on a small range of directions near θr. If it is low, then r occurs on a 
wide range of directions, or it occurs along contradictory directions. θr and ar will allow 
us to generate directional estimates as part of the linguistic description (Section 3.2.2). 

3 Linguistic descriptions 

The descriptions are generated using fuzzy models of set relationships between objects.  
A handful of relevant Allen relations may be selected to convey more detailed 
topological information, and directional estimates of where these relations are most 
prominent may also be provided. 

3.1 Fuzzy set relations between 2-D regions 

Numerous models have been developed to represent the topological relationships 
between two-dimensional regions. In GIS applications, boundary/area intersection 
models have gained a wide following. In the context of image analysis, however, it is 
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often the case that no explicit boundary information is available. Image regions are 
typically defined as sets of pixels. Such raster objects can take arbitrarily complex 
shapes, and it may be difficult or impractical to algorithmically define a region boundary. 
Here, we focus on five set relations between 2-D objects, where each object is defined as 
a non-empty, finite set of pixels. These relations are defined in Table 1. 

Table 1 Five mutually exclusive and collectively exhaustive set relations 

Relation Abbr. Symmetric A ∩ B ≠ ∅ A – B ≠ ∅ B – A ≠ ∅ 

DISJOINT(A,B) DIS Yes 0 1 1 

OVERLAP(A,B) OVE Yes 1 1 1 

SUBSET(A,B) SUB No 1 0 1 

SUBSET(B,A) SUBi No 1 1 0 

EQUAL(A,B) EQ Yes 1 0 0 

Note that, in this table, the relation SUBSET represents proper subsethood.  
Let R = {DIS,OVE,SUB,SUBi,EQ}. The set relations in R are mutually exclusive and 
collectively exhaustive. It is quite clear, however, that crisp definitions of these relations 
are not very practical. Image acquisition and segmentation algorithms are susceptible to 
errors, often resulting in missing or superfluous pixels attributed to some object. Suppose 
we have two objects A and B which are, in reality, equal (EQ(A,B) = 1, SUB(A,B) = 0 
and SUBi(A,B) = 0). Owing to an acquisition error, a single missing pixel in A would 
change the relation from EQ to SUB (EQ(A,B) = 0, SUB(A,B) = 1, and SUBi(A,B) = 0). 
On the other hand, a superfluous pixel in A would change the relation from EQ to SUBi 
(EQ(A,B) = 0, SUB(A,B) = 0 and SUBi(A,B) = 1). Minor errors can affect the crisp 
relations between 2-D regions drastically. To robustly handle real-world data, 
fuzzification of the relations is necessary. By defining the relations in R as continuous 
functions onto [0,1], the fuzzification proposed here achieves continuous transitions 
between the relations and allows us to discern between various degrees to which a certain 
relation is present. For instance, we could have two objects which are ‘mostly’ 
DISJOINT, but which also ‘slightly’ OVERLAP. 

Let x = |A ∩ B|/|A| be the degree of subsethood of A in B and y = |A ∩ B|/|B| be the 
degree of subsethood of B in A. In order to fuzzify the relations in R, we propose to use 
the following membership functions: 

DIS(A,B) = min[lo(x), lo(y)] 

OVE(A,B) = max{min[mid(x), 1 – hi(y)], min[mid(y), 1 – hi(x)]} 

EQ(A,B) = min[hi(x), hi(y)] 

SUB(A,B) = hi(x) – min[hi(x), hi(y)] 

SUBi(A,B) = hi(y) – min[hi(x), hi(y)] 

These membership functions are illustrated in Figure 7. A contour map at 0.5 is shown in 
Figure 8. The functions lo, mid and hi are as in Figure 9. 
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Figure 7  Fuzzified set relations between 2-D regions. (a): DIS(A,B); (b): SUB(A,B);  
(c): SUBi(A,B); (d): EQ(A,B); (e) and (f): two views of OVE(A,B) 

 

Figure 8  A contour map of the membership functions from Figure 7 at 0.5, showing where each 
function dominates 

 

Figure 9  The functions lo, mid and hi 
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Consider a pair of objects (A,B). For any set relation r in R, we have r(A,B) ∈ [0,1]. 
Boundary conditions are preserved, i.e., it is possible to have r(A,B) = 0, and it is 
possible to have r(A,B) = 1. Also, ∑r∈R r(A,B) = 1. Furthermore, for any r1 and r2 in R, if 
r1(A,B) ≠ 0 and r2(A,B) ≠ 0, then r1 and r2 are direct neighbours on the conceptual 
neighbourhood graph shown in Figure 10. Let VAB = {r∈R  r(A,B) > 0}. The set VAB 
contains at least one and at most three relations. In fact, there are 13 possible values for 
VAB: {DIS}, {OVE}, {SUB}, {SUBi}, {EQ}, {DIS,OVE}, {OVE,SUB}, {OVE,SUBi}, 
{OVE,EQ}, {SUB,EQ}, {SUBi,EQ}, {OVE,SUB,EQ} and {OVE,SUBi,EQ}. 

Figure 10 Conceptual neighbourhood graph of R 

 

Given the relations in VAB, we can begin to think about generating a simple linguistic 
description of the spatial relationships between the two objects A and B. For instance, if 
VAB = {SUB}, we could say “A is perfectly contained by B”. If VAB = {DIS,OVE}, with 
DIS(A,B) = 0.7 and OVE(A,B) = 0.3, we could say “A is mostly disjoint from but 
somewhat overlaps B”. In some applications, such descriptions might be considered 
perfectly sufficient. In other applications, however, the user might benefit from more 
detailed linguistic descriptions. Consider the first example, “A is perfectly contained by 
B”. This statement tells the user nothing about the inner-adjacency of A to B. If A lies 
near the eastern border of B, a statement such as “A starts B to the east” could be 
included to supplement the description. This information can be obtained by extracting 
the values θs and as from the F-histogram of the Allen relation s (Section 2.2).  
The second example, “A is mostly disjoint from but somewhat overlaps B”, could  
be augmented with directional estimates such as “A is before B to the north” and  
“A overlaps B to the northeast”. Again, this information can be readily obtained from the 
F-histograms of the Allen relations < and o. 

The general idea is that depending on the relations found in VAB, we can seek further 
information in the relevant Allen F-histograms. The exact approach taken to generate a 
complete linguistic description varies with the contents of VAB. In Section 3.3, we 
examine the different approaches on a case-by-case basis. First, however, we shall 
introduce several concepts that will be useful in generating the descriptions. 
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3.2 Elements of a linguistic description 

3.2.1 Predominance and prominence 

Let A and B be two objects. In cases where a single relation r is sufficient to describe the 
spatial relationships between A and B, the system generates a statement of the form: 

“A perfectly r B”, 

e.g., “A perfectly contains B” or “A is perfectly equal to B”. However, it is often the case 
that we need to convey the relative proportion of two set relations using natural language. 
Suppose that we have two relations r1, r2 ∈ R ordered such that r1(A,B) ≥ r2(A,B) > 0. 
The predominance of r1 over r2 is given by:  

1 2, 1 1 2(A, B) /[ (A,B) (A, B)].r rp r r r= +  

A statement about the relative proportion of r1 and r2 takes the form: 

“A [〈adverb1〉] r1 〈connective〉 [〈adverb2〉] r2 B”, 

e.g., “A contains but is marginally equal to B” or “A is disjoint from as much as it 
overlaps B”. The choice of adverbs and connectives is made based on the value of 

1 2, .r rp  
One mapping between 

1 2,r rp and some linguistic terms is shown in Figure 11 as a simple 
fuzzy rule base. 

Figure 11 Rules for generating statements about the relative proportion of two relations.  
In our experiments, P2 = 0.63 and P1 = 0.88 

 

pr1,r2 

 Low Medium High 
Adverb1 – Mostly – 
Connective As much as But But 
Adverb2 – Somewhat Marginally 

In some cases, we may wish to express how prominent a particular Allen relation r is, 
independently of any other relation. We will see in Section 3.3 how the degree of 
prominence pr of r is computed. Suppose, for example, that pm = 0.35. According to 
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Figure 12, which shows one possible mapping from the interval [0,1] onto a set of 
linguistic terms, we could say that “A slightly meets B”. 

Figure 12 Rules for generating statements about prominence. In our experiments, P5 = 0.25, 
P4 = 0.5 and P3

 = 0.75 

 

pr 
 Low Medium low Medium high High 

Linguistic term Very slightly Slightly Strongly Very strongly 

3.2.2 Directional estimates 

A directional estimate of some Allen relation r is a linguistic statement describing where 
r is most prominent. Such an estimate is generated based on the directional acuteness ar 
(Section 2.2) and a linguistic quantisation of the primary direction θr. Directional 
estimates take the form: 

“A r B [〈adverbr〉] to the θr ”, 

where the adverb is chosen based on the value of ar. A possible mapping from ar to the 
appropriate adverb is shown in Figure 13. Generally, whenever ar is low, the system will 
either output “A r B in multiple directions” or omit the directional estimate altogether. 
The symbol θr  denotes one of the 16 compass points N, S, E, W, NE, NW, SE, SW, 
NNE, NNW, SSE, SSW, ENE, ESE, WNW and WSW. It is the compass point that the 
angle θr coincides with best. A complete directional estimate might be “A meets B to the 
west” or “A overlaps B loosely to the northeast”. 

3.3 Generating descriptions on a case-by-case basis 

In this subsection, we present the approaches to generating complete linguistic 
descriptions based on all possible values of the set VAB. 

3.3.1 Perfect equality (VAB = {EQ}) 

This is the trivial case. The statement “A is perfectly equal to B” is generated, and 
nothing remains unsaid. 
 



      

 

   

 

   

    Speaking with spatial relations 291    
 

    
 
 

   

 

 

       
 

Figure 13 Rules for generating directional estimates. In our experiments, A3 is 0.5, A2 is 0.67 and 
A1 is 0.83 

 
ar  

Low* Medium low Medium high High 
Adverb N/a Loosely Primarily – 

*Generally, a special action is taken if the acuteness drops to low (Section 3.2.2). 

3.3.2 Perfect proper subsethood (VAB = {SUB} or VAB = {SUBi}) 

If VAB = {SUB}, then A is a proper subset of B and the description takes one of three 
possible forms, depending on the prominence of the Allen relation s (starts) and the 
directional acuteness as. The prominence of s can be measured with the quantity ps 
defined as: 

AB AB
smax [F ( ) / max F ( )].s s r

p θ θθ θ′ ∈
′= ∑ A

 

ps takes a value on [0,1] and measures the degree to which the Allen relation s dominates 
along a direction of major object interaction. 

Case 1: ps = 0 or as < A3 

The relation s is not present at all or its directional acuteness drops below a reasonable 
value (see parameter A3 in Figure 13). The description “A is perfectly contained by B” 
is generated. 

Case 2: ps ∈ (0,1) and as ≥ A3 

The relation s is present to some intermediate degree and a directional estimate is 
reasonable. The description “A is perfectly contained by and 〈adverb〉 starts B” is 
generated, followed by a directional estimate of s. The 〈adverb〉 is chosen based on the 
value ps and the mapping in Figure 12. 

Case 3: ps = 1 and as ≥ A3 

The relation s completely dominates the spatial relationships along a direction of 
maximum object interaction and a directional estimate is reasonable. The description  
“A perfectly starts B” is generated, followed by a directional estimate of s. 
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In cases where VAB = {SUBi}, the descriptions are identical in format, but the 
relations contained by and starts are replaced with contains and started by, respectively. 
In the remainder of this paper, similar substitutions are assumed for cases involving the 
set relations SUB and SUBi. 

3.3.3 Perfect overlap (VAB = {OVE}) 

First, the statement “A perfectly overlaps B” is generated. If a directional estimate of the 
Allen relation o is reasonable (ao ≥ A3), it follows the opening statement. 

3.3.4 Perfect disjointness (VAB = {DIS}) 

Similarly to cases of perfect subsethood (Section 3.3.2), the description takes one of three 
possible forms, depending on the prominence of the Allen relation m (meets). The 
prominence of m is defined as: 

AB AB AB
<max [F ( ) / max (F ( ) F ( ))].m m mp θ θθ θ θ′ ′ ′= +  

Case 1: pm = 0 

The relation m is not present at all. The description “A is perfectly disjoint from B” 
is generated, followed by a directional estimate of the Allen relation < (before). 

Case 2: pm ∈ (0,1) 

The relation m is present to some intermediate degree. The description “A is 
perfectly disjoint from and 〈adverb〉 meets B” is generated, followed by directional 
estimates of < and m. The 〈adverb〉 is chosen based on the value pm and the mapping 
in Figure 12. 

Case 3:  pm = 1 

The relation m completely dominates the spatial relationships along a direction of 
maximum object interaction. The description “A perfectly meets B” is generated, 
followed by a directional estimate of m. 

3.3.5 Overlap and disjointness (VAB = {OVE,DIS}) 

These are intermediate cases between perfect disjointness and perfect overlap (the objects 
overlap ‘slightly’). First, a statement about the relative proportion of the relations DIS 
and OVE is generated (Section 3.2.1). To provide more detailed information, three Allen 
relations are of interest: <, m and o. The simplest way to handle these cases is to provide 
all three directional estimates. In the interest of brevity, however, it is not always 
necessary to do so. The condition of overlap is of primary interest here, and it seems 
reasonable to always give a directional estimate for the Allen relation o. Directional 
estimates for the relations < and m, however, need only be given if they actually provide 
additional information, i.e., the estimates differ from the estimate of o. Some examples of 
where these estimates are redundant are shown in Table 3 (c,d,e). Examples of where 
these estimates are useful are shown in Table 3 (f,g,h). 
 
 



      

 

   

 

   

    Speaking with spatial relations 293    
 

    
 
 

   

 

 

       
 

3.3.6 Subsethood and equality (VAB = {SUB,EQ} or VAB = {SUBi,EQ}) 

These cases occur whenever one of the objects is fully contained by the other and the 
objects are nearly equal. If VAB = {SUB,EQ}, a statement about the relative proportion of 
the relations SUB and EQ is generated. As with cases of perfect proper subsethood, the 
prominence of the Allen relation s is examined to determine whether inner-adjacency 
exists. Here, ps is given by: 

AB AB
{

max [F ( ) / max F ( )].s s rr
p θ θθ θ′ ∈ −

′= ∑ A eq}
 

If ps > 0 and as ≥ A3, the directional estimate of s follows as the final statement of the 
description. 

3.3.7 Subsethood and overlap (VAB = {SUB,OVE}, VAB = {SUBi,OVE}, or 
VAB = {EQ,OVE}) 

These cases occur whenever one object is partially contained by the other, but ‘spills out’ 
beyond the boundary of its container. A statement about the relative proportion of the set 
relations (SUBSUBiEQ)1 and OVE is generated. If a directional estimate of the Allen 
relation o is reasonable (ao ≥ A3), it follows the opening statement. 

3.3.8 Subsethood, equality and overlap (VAB = {SUB,EQ,OVE} or 
VAB = {SUBi,EQ,OVE}) 

As above, these cases occur whenever one object is partially contained by the other, but 
‘spills out’ beyond the boundary of its container. The difference is that here the objects 
are also somewhat equal. A statement describing the relative proportion of (SUBSUBi) 
and OVE is generated, followed by the statement “The objects are 〈adverb〉 equal”. The 
〈adverb〉 is chosen based on the value EQ(A,B) and the rules in Figure 12. A directional 
estimate of the Allen relation o, if reasonable, follows as the last statement of the 
description. 

4 Experimental results 

Six series of experiments were performed to illustrate some important characteristics of 
the descriptions. The results can be found in Tables (2–7) and include images of the 
object configurations and the corresponding descriptions. In all the images, the argument 
object (A) is shown in light grey and the referent object (B) is shown in dark grey. Areas 
of overlap appear in medium grey. 

Table 2 deals with cases of disjointness and adjacency. Configurations (a–d) show 
how the directional assessment changes with the acuteness of the Allen 
relation < (before). As the argument object begins to surround the referent, the 
directional estimates become less and less specific. Configurations (e–j) illustrate a 
gradual transition from perfect disjointness to perfect adjacency. 
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Table 2 Disjointness and adjacency dataset 

(a) 

 

A is perfectly disjoint from B 
A is before B to the north 

(b) 

 

A is perfectly disjoint from B 
A is before B primarily to the north 

(c) 

 

A is perfectly disjoint from B 
A is before B loosely to the north 

(d) 

 

A is perfectly disjoint from B 
A is before B in multiple directions 

(e) 

 

A is perfectly disjoint from B 
A is before B to the northeast 

(f) 

 

A is perfectly disjoint from and very slightly meets B 
A is before B to the east-northeast 
A meets B from the northeast 

(g) 

 

A is perfectly disjoint from and slightly meets B 
A is before B to the east-northeast 
A meets B from the north-northeast 

(h) 

 

A is perfectly disjoint from and strongly meets B 
A is before B to the east 
A meets B from the northeast 

(i) 

 

A is perfectly disjoint from and very strongly meets B 
A is before B to the east 
A meets B from the northeast 

(j) 

 

A perfectly meets B 
A meets B from the east-northeast 

Table 3 focuses on overlap, adjacency and disjointness. Configurations (a) and (b) show 
perfectly overlapping object pairs. According to the definition of the set relation OVE 
(Section 3.1), in both cases we have OVE(A,B) = 1. In the former, a directional estimate 
for the Allen relation o can be readily generated. In the latter, however, it is unclear from 
which direction A overlaps B, and no directional estimate is produced. Configurations  
(c–h) contain objects whose spatial relationships fall somewhere between perfect 
disjointness and perfect overlap (VAB = {DIS,OVE}). For configurations (c–e), the only 
directional estimate given is for the Allen relation o. Although the relations < and m are 
present to some degree, they occur along the same primary direction as o, and their 
directional estimates would be somewhat redundant. The statement “A overlaps B to the 
east” says it all. Configurations (f–h), on the other hand, are cases where additional 
directional estimates give useful information. If these estimates were omitted, important 
topological and directional information would have been lost. 
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Table 3 Overlap, adjacency and disjointness dataset 

(a) 

 

A perfectly overlaps B 
A overlaps B from the east 

(b) 

 

A perfectly overlaps B 

(c) 

 

A is disjoint from but marginally overlaps B 
A overlaps B from the east 

(d) 

 

A is mostly disjoint from but somewhat overlaps B 
A overlaps B from the east 

(e) 

 

A is disjoint from as much as it overlaps B 
A overlaps B from the east 

(f) 

 

A overlaps as much as it is disjoint from B 
A overlaps B from the south-southeast 
A is before B to the southeast 

(g) 

 

A is mostly disjoint from but somewhat overlaps B 
A meets B from the east 
A overlaps B from the south-southeast 

(h) 

 

A is mostly disjoint from but somewhat overlaps B 
A is before B to the east 
A meets B from the southeast 
A overlaps B from the south-southeast 

Table 4 shows cases of proper subsethood. Configurations (a–f) represent a transition 
between a state of no inner-adjacency to a state of perfect inner-adjacency. 
Configurations (g) and (h) are cases where the argument object is inner-adjacent to the 
referent in multiple places. Since no reasonable directional estimates for the Allen 
relation s can be given, the estimates are suppressed (Section 3.3.2). Whether this 
constitutes a loss of important spatial information or not is, of course, a rather subjective 
matter. The method presented here is only one possible way to describe such 
configurations. Alternatively, a description of the form “A is perfectly contained by B 
and starts B in multiple directions” could be generated. 
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Table 4 Proper subsethood dataset 

(a) 

 

A is perfectly contained by B 

(b) 

 

A is perfectly contained by and very slightly starts B 
A starts B to the north 

(c) 

 

A is perfectly contained by and slightly starts B 
A starts B to the north 

(d) 

 

A is perfectly contained by and strongly starts B 
A starts B to the north 

(e) 

 

A is perfectly contained by and very strongly starts B 
A starts B to the north 

(f) 

 

A perfectly starts B 
A starts B to the north 

(g) 

 

A is perfectly contained by B 

(h) 

 

A is perfectly contained by B 

Table 5 depicts the first seven cases from a dataset dealing with varying degrees of 
subsethood, equality and overlap. Configurations (a–d) are cases where the set relation 
EQ gradually becomes predominant over the set relation SUB. In (a) and (b), information 
regarding inner-adjacency is given in the form of directional estimates of the Allen 
relation s. In (c) and (d), however, this is not applicable. Configurations (e–g) are a 
strange mix. Their common characteristic is that their spatial relationships contain a fair 
amount of the set relation OVE, yet no reasonable directional estimate of the Allen 
relation o can be given. Table 6 shows a few more configurations from the subsethood, 
equality and overlap dataset. 
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Table 5 Subsethood, equality and overlap dataset (Part 1) 

(a) 

 

A is contained by but is marginally equal to B 

A starts B to the northwest 

(b) 

 

A is mostly contained by but is somewhat equal to B 

A starts B primarily to the north 

(c) 

 

A is contained by as much as it is equal to B 

(d) 

 

A is perfectly equal to B 

(e) 

 

A mostly overlaps but is somewhat disjoint from B 

(f) 

 

A overlaps but is marginally contained by B 

the objects are very slightly equal 

(g) 

 

A overlaps but marginally contains B 

Finally, Table 7 contains a mayfly mating sequence captured on Doppler radar on  
June 26, 2001 over St. Clair County, Michigan, USA. The sequence was captured by the 
National Weather Service Detroit/Pontiac Doppler radar site. The objects were hand 
segmented from images obtained at http://www.crh.noaa.gov/dtx/mayfly.htm.  
This dataset was used to test the viability of the proposed approach on real-world data. 
The descriptions generated seem reasonable, despite the highly irregular (and often 
disconnected) shapes of the mayfly swarm. 
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Table 6 Subsethood, equality and overlap dataset (Part 2) 

(a) 

 

A is mostly contained by but somewhat overlaps B 
A overlaps B from the east 

(b) 

 

A is mostly contained by but somewhat overlaps B 
A overlaps B from the northeast 

(c) 

 

A is mostly contained by but somewhat overlaps B 
The objects are very slightly equal 
A overlaps B loosely from the north 

(d) 

 

A is contained by as much as it overlaps B 
A overlaps B from the northeast 

(e) 

 

A mostly overlaps but is somewhat contained by B 
the objects are slightly equal 
A overlaps B from the northeast 

(f) 

 

A overlaps but is marginally contained by B 
the objects are very strongly equal 
A overlaps B from the northeast 

Table 7 Doppler radar dataset 

(a) 

 

the swarm is perfectly disjoint from St. Clair County 
the swarm is before the county to the southwest 

(b) 

 

the swarm is disjoint from but marginally overlaps St. Clair County 
the swarm is before the county to the southwest 
the swarm overlaps the county from the west-southwest 

(c) 

 

the swarm mostly overlaps but is somewhat contained  
by St. Clair County 
the swarm overlaps the county from the west-southwest 

(d) 

 

the swarm is mostly contained by but somewhat overlaps  
St. Clair County 
the swarm overlaps the county from the southwest 

(e) 

 

the swarm is contained by but marginally overlaps  
St. Clair County 
the swarm overlaps the county primarily from the  
east-southeast 

(f) 

 

the swarm is mostly disjoint from but somewhat overlaps  
St. Clair County 
the swarm meets the county from the south-southwest 
the swarm overlaps the county from the southwest 
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5 Concluding remarks 

The system presented here can be used to describe the spatial relationships between  
two-dimensional objects using natural language. The linguistic descriptions include set, 
topological and directional relations. The system is quite flexible in the sense that it 
would be easy to substitute a custom dictionary of adverbs and hedges to suit a particular 
user’s needs. For this approach to work, all that is needed is a set of Allen F-histograms 
and the values of the fuzzified set relations DIS, OVE, SUB, SUBi and EQ. The ultimate 
goal of this research is to one day be able to succinctly describe the spatial relationships 
between two arbitrary objects. In future work, we will investigate the use of relations 
such as between and surrounds, and we will incorporate distance information into the 
descriptions. 
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