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ABSTRACT

In this paper, we provide an overview of our on-going work using spatial relations for mobile robot navigation. Using the
histogram of forces, we show how linguistic expressions can be generated to describe a qualitative view of the robot with
respect to its environment. The linguistic expressions provide a symbolic link between the robot and a human user, thus
facilitating two-way, human-like communication. In this paper, we present two ways in which spatial relations can be used
for robot navigation. First, egocentric spatial relations provide a robot-centered view of the environment (e.g., there is an
object on the left). Navigation can be described in terms of spatial relations (e.g., move forward while there is an object on
the left, then turn right), such that a complete navigation task is generated as a sequence of navigation states with
corresponding behaviors. Second, spatial relations can be used to analyze maps and facilitate their use in communicating
navigation tasks. For example, the user can draw an approximate map on a PDA and then draw the desired robot trajectory
also on the PDA, relative to the map. Spatial relations can then be used to convert the relative trajectory to a corresponding
navigation behavior sequence. Examples are included using a comparable scene from both a robot environment and a PDA-
sketched trajectory showing the corresponding generated linguistic spatial expressions.

Keywords: spatial relations, linguistic spatial descriptions, mobile robot navigation, human-robot communication, histogram
of forces

1. INTRODUCTION

Being able to interact and communicate with robots in the same way we interact with people has long been a goal of AI
and robotics researchers. Much of the robotics research has emphasized the goal of achieving autonomous robots. However,
in our research, we are less concerned with creating autonomous robots that can plan and reason about tasks, and instead we
view them as semi-autonomous tools that can assist a human user. The user supplies the high-level and difficult reasoning
and strategic planning capabilities. We assume the robot has some perception capabilities, reactive behaviors, and perhaps
some limited reasoning abilities that allow it to handle an unstructured and dynamic environment.

In this scenario, the interaction and communication mechanism between the robot and the human user becomes very
important. The user must be able to easily communicate what needs to be done, perhaps at different levels of task abstraction.
In particular, we would like to provide an intuitive method of communicating with robots that is easy for users that are not
expert robotics engineers. We want domain experts to define their own task use of robots, which may involve controlling
them, guiding them, or even programming them.

In ongoing research on human-robot interaction, we have been investigating the use of spatial relations in communicating
purposeful navigation tasks. Linguistic, human-like expressions that describe the spatial relations between a robot and its
environment provide a symbolic link between the robot and the user, thus comprising a type of navigation language. The
linguistic spatial expressions can be used to establish effective two-way communications between the robot and the user, and
in this paper, we provide approaches from both perspectives.

First, from the robot perspective, we have studied how to recognize the current (qualitative) state in terms of egocentric
spatial relations between the robot and objects in the environment, using sensor readings only (i.e., with no prior map or
model of the environment). Linguistic spatial descriptions of the state are then generated for communication to the user.

Second, from the user perspective, we offer a novel approach for communicating a navigation task to a robot, which is
based on robot-centered spatial relations. Our approach is to let the user draw a sketch of an environment map (i.e., an
approximate representation) and then sketch the desired robot trajectory relative to the map. State information is extracted
from the drawing on a point by point basis along the sketched robot trajectory. We generate a linguistic description for each
point and show how the robot transitions from one qualitative state to another throughout the desired path. A complete
navigation task is represented as a sequence of these qualitative states based on the egocentric spatial relations, each with a
corresponding navigation behavior. We assume the robot has pre-programmed or pre-learned, low-level navigation behaviors
that allow it to move safely around its unstructured and dynamic environment without hitting objects. In this approach, the
robot does not have a known model or map of the environment, and the user may have only an approximate map. Thus, the



navigation task is built upon connected spatial states (i.e., qualitative states), which form a type of topological map. Note that
we are not attempting to build an exact model of the environment, nor to generate a quantitative map. However, we do want
to generate linguistic descriptions that represent the qualitative state of the robot with respect to its environment, in terms that
are easil y understood by human users.

The idea of using linguistic spatial expressions to communicate with a semi-autonomous mobile robot has been proposed
previously. Gribble et al use the framework of the Spatial Semantic Hierarchy for an intelligent wheelchair [1]. Perzanowski
et al use a combination of gestures and linguistic directives such as “go over there” [2]. Shibata et al use positional relations
to overcome ambiguities in recognition of landmarks [3]. However, the idea of communicating with a mobile robot via a
hand-drawn map appears to be novel.  The strategy of using a sketch with spatial relations has been proposed by Egenhofer
as a means of querying a geographic database [4]. The hand-drawn sketch is translated into a symbolic representation that can
be used to access the geographic database.

In this paper, we show how spatial relations can be extracted both from a robot’s sensors and from a hand-drawn map
sketched on a PDA. In Section 2, we discuss background material on the spatial analysis algorithms, which are an extension
of work previously applied to image analysis. In Section 3, we show how the robot’s sonar readings can be used to generate
inputs for the spatial analysis algorithms. In Section 4, we show a method for extracting the environment representation and
the corresponding states from the PDA sketch. Experiments are shown in Section 5 using a comparable scene from both a
robot environment and a PDA-sketched trajectory showing the corresponding generated linguistic spatial expressions. We
conclude in Section 6 and discuss future work.

2. SPATIAL RELATIONS METHODS

Freeman [5] proposed that the relative position of two objects be described in terms of spatial relationships (such as
“above” , “surrounds”, “ includes” , etc.). He also proposed that fuzzy relations be used, because “all -or-nothing” standard
mathematical relations are clearly not suited to models of spatial relationships. By introducing the notion of the histogram of
angles, Miyajima and Ralescu [6] developed the idea that the relative position between two objects can have a representation
of its own and can thus be described in terms other than spatial relationships. However, the representation proposed shows
several weaknesses (e.g., requirement for raster data, long processing times, anisotropy).

In [7][8], Matsakis and Wendling introduced the histogram of forces. Contrary to the angle histogram, it ensures
processing of raster data as well as of vector data. Moreover, it offers solid theoretical guarantees, allows explicit and
variable accounting of metric information, and lends itself, with great flexibilit y, to the definition of fuzzy directional spatial
relations (such as “ to the right of” , “ in front of” , etc.). For our purposes, the histogram of forces also allows for a low-
computational handling of heading changes in the robot’s orientation and makes it easy to switch between a world view and
an egocentric robot view.

2.1  The Histogram of Forces

The relative position of a 2D object A with regard to another object B is represented by a function FAB from IR  into IR  +.
For any direction θ, the value FAB(θ) is the total weight of the arguments that can be found in order to support the proposition
“A is in direction θ of B” . More precisely, it is the scalar resultant of elementary forces. These forces are exerted by the
points of A on those of B, and each tends to move B in direction θ (Fig. 1). FAB is called the histogram of forces associated
with (A,B) via F, or the F−histogram associated with (A,B). The object A is the argument, and the object B the referent.
Actuall y, the letter F denotes a numerical function. Let r be a real. If the elementary forces are in inverse ratio to dr, where d
represents the distance between the points considered, then F is denoted by Fr . The F0  –histogram (histogram of constant
forces) and F2 –histogram (histogram of gravitational forces) have very different and very interesting characteristics. The
former coincides with the angle histogram—without its weaknesses—and provides a global view of the situation. It considers
the closest parts and the farthest parts of the objects equally, whereas the F2 –histogram focuses on the closest parts.

Throughout this paper, the referent B is always the robot. The F-histogram associated with (A,B) is represented by a
limited number of values (i.e., the set of directions θ is made discrete), and the objects A and B are assimilated to polygons
(vector data). It is shown that the computation of FAB is of complexity O(n log(n)), where n denotes the total number of
vertices.

Detail s can be found in [7][8].
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Figure 1.   Computation of  FAB(θθ). It is the scalar
resultant of forces (black arrows). Each one tends

to move B in direction θθ.

2.2  Linguistic Description of Relative Positions

In [9][10], Matsakis et al. present a system that produces linguistic spatial descriptions. The description of the relative
position between any 2D objects A and B relies on the sole primitive directional relationships: “ to the right of” , “above” , “ to
the left of” and “below” (imagine that the objects are drawn on a vertical surface). It is generated from F0

AB (the histogram of
constant forces associated with (A,B)) and F2

AB (the histogram of gravitational forces). First, eight values are extracted from
the analysis of each histogram: ar (RIGHT), br (RIGHT), ar (ABOVE), br (ABOVE), ar (LEFT), br (LEFT), ar (BELOW) and
br (BELOW). They represent the “opinion” given by the considered histogram (i.e., F0

AB if r is 0, and F2
AB if it is 2). For

instance, according to F0
AB the degree of truth of the proposition “A is to the right of B” is a0(RIGHT). This value is a real

number greater than or equal to 0 (proposition completely false) and less than or equal to 1 (proposition completely true).
Moreover, according to F0

AB the maximum degree of truth that can reasonably be attached to the proposition (say, by another
source of information) is b0(RIGHT) (which belongs to the interval [a0(RIGHT),1]). F0

AB and F2
AB’ s opinions (i.e., the

sixteen values) are then combined. Four numeric and two symbolic features result from this combination. They feed a system
of fuzzy rules and meta-rules that outputs the expected linguistic description. The system handles a set of  adverbs (li ke
“mostly” , “perfectly” , etc.) which are stored in a dictionary, with other terms, and can be tailored to individual users. A
description is generall y composed of three parts. The first part involves the primary direction (e.g., “A is mostly to the right
of B” ). The second part supplements the description and involves a secondary direction (e.g., “but somewhat above” ). The
third part indicates to what extent the four primitive directional relationships are suited to describing the relative position of
the objects (e.g., “ the description is satisfactory” ). In other words, it indicates to what extent it is necessary to util ize other
spatial relations (e.g., “surrounds” ).

The use of a dictionary for storing the linguistic terms provides flexibili ty and easy adaptability. The precise terminology
and phrasing can easil y be adjusted to suit the application or the user.  The terminology can even be translated to create multi-
lingual expressions.

3. EXTRACTING SPATIAL STATES FROM ROBOT SENSORS

In this section, we describe the application of the F0   and F2  histograms for extracting spatial relations from the sensor
readings of a mobile robot. For this application, we use a vector data representation (i.e., a boundary representation using
vertices), which simpli fies the computational complexity and provides a method for producing the linguistic expressions in
real time. In this work, we have used a Nomad 200 robot with 16 sonar sensors evenly distributed along its circumference.
The sensor readings are used to build a polygonal representation of the objects surrounding the robot. The vertices of each
polygon are extracted and the F0   and F2  histograms are built, as described in Section 2.1.  The histograms are then used to
generate linguistic descriptions of relative positions between the robot and the environment objects (see Figure 2).  Note that
although we show a specific sensor type and layout, the methods used do not assume a particular sensor type or
configuration. Any type of range sensor could be used. Also, the analysis software is designed so that the sensor layout is
read during the initialization process.

The first step in recognizing spatial relations from sensor readings is to build object representations from the readings. Let
us consider a simple case of the robot and a single obstacle, shown in Figure 3. The sonar sensor S returns a range value
indicating that an obstacle has been detected. In the case of Figure 3, only one obstacle was detected, and a single object
representation is plotted as a trapezoid in the center of cone S. The depth of the obstacle cannot be determined from the sonar
reading; thus, we use a constant arbitrary depth when building objects. We also represent the cylindrical robot as a
rectangular object, because it is easier to process using vector data, since there are only 4 vertices in a rectangle. The
bounding rectangle we build around the robot is also shown in Figure 3.
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Figure 2.  Synoptic diagram. (a) Sensor readings. (b) Construction of the polygonal objects. (c) Computation of the
histograms of forces. (d) Extraction of numeric features. (e) Fusion of information, (f) Generated linguistic spatial

descriptions for each object sensed, (g) Grouping of objects to generate a less detailed description.

In the case of multiple sonar returns, we examine the sonar readings that are adjacent to each other. There is a question on
whether adjacent sonar readings are from a single obstacle or multiple obstacles. Our solution to this issue is to determine if
the robot can fit between the points of two adjacent sonar returns. If the robot cannot fit between two returns, then we
consider these returns to be from the same object. Even if there are actually two objects, they may be considered as one for
robot navigation purposes. In the case that the distance between the two points of the sonar returns is big enough to allow the
robot to travel through, we consider separate objects. To form objects from multiple sonar returns we join the centers of the
corresponding sonar cones.

For example, consider the obstacle in Figure 4. Since the obstacle is relatively far from the robot, the distance between the
sonar returns is rather big, and we cannot determine whether the obstacle continues between the three sonar readings, or we
have three different obstacles. In this case, we plot three different objects until the robot gets closer to the obstacle and we
have a better resolution of the obstacle, since more sensors would detect its presence.

S

robot

object

sonar sensors

no return no return

                      

Figure 3.  A single object is formed
from a single sonar reading.

Figure 4.  Three different objects are formed from 3
different sonar readings, if the readings are not “ close”
enough, according to the distance measure [11].

After building the objects around the robot based on the sonar sensor readings, we represent the relative position between
each object and the robot by the histograms of constant and gravitational forces associated with the robot/object pair, as
described in Section 2. We then generate an egocentric linguistic description, i.e., from the robot’s point of view. Thus, the
descriptions also depend on the robot’s orientation or heading. A change in robot heading is easily accomplished by shifting
the histogram along its horizontal axis. Figure 5 shows an example of the linguistic expressions generated for the 5 objects
detected.  More details and examples can be found in [11].
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Figure 5.  The robot detects 5 obstacles.  Object representations are shown as plotted rectangles. The generated
linguistic spatial descriptions are shown on the right.

4. INTERPRETING A SKETCHED MAP

The interface used for drawing the robot trajectory map is a PDA (e.g., a PalmPilot). The stylus allows the user to sketch
a map much as she would on paper for a human colleague. The PDA captures the string of (x,y) coordinates sketched on the
screen and sends the string to a computer for processing.

The user first draws a representation of the environment by sketching the approximate boundary of each object. During
the sketching process, a delimiter is included to separate the string of coordinates for each object in the environment. After all
of the environment objects have been drawn, another delimiter is included to indicate the start of the robot trajectory, and the
user sketches the desired path of the robot, relative to the sketched environment. An example of a sketch is shown in Figure
6(a), where each point represents a captured (x,y) screen pixel.

                               

Figure 6. (a) The sketched map on the PDA used for experiments in Section 5. Environment objects are
drawn as a boundary representation. The robot path starts from the left. (b) The corresponding
environment defined using the robot simulator.

For each point along the trajectory, a view of the environment is built, corresponding to the radius of the sensor range.
The left part of Figure 7 shows a sensor radius superimposed over a piece of the sketch. The sketched points that fall within
the scope of the sensor radius represent the portion of the environment that the robot can sense at that point in the path.

The points within the radius are used as boundary vertices of the environment object that has been detected. To
accommodate convex-shaped objects, an additional point on the sensor radius is included. Together, they define a polygonal
region (Figure 7, step (a)) whose relative position with respect to the robot (assimilated to a square) is represented by the two
histograms (Figure 7, step (b)): the histogram of constant forces and the histogram of gravitational forces, as described in
Sec. 2.  The heading is computed along the trajectory using a filtering algorithm that compensates for the discrete pixels.

robot
path

Object 1 is mostly to the left of the Robot
 but somewhat forward
 (the description is satisfactory)
Object 2 is behind the Robot
 but extends to the left relative to the Robot
 (the description is satisfactory)
Object 3 is mostly to the right of the Robot
 but somewhat to the rear
 (the description is satisfactory)
Object 4 is to the right of the Robot
 (the description is satisfactory)
Object 5 is mostly to the right of the Robot
 but somewhat forward
 (the description is satisfactory)

(a) (b)
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Figure 7.  Synoptic diagram. (a) Construction of the polygonal objects. (b) Computation of the histograms
of forces. (c) Extraction of numeric features. (d) Fusion of information, (e) Generated linguistic spatial

descriptions for each object sensed, (f) Grouping of objects to generate a less detailed description.

The histograms of constant and gravitational forces associated with the robot and the polygonal region are then used to
generate a linguistic description of the relative position between the two objects. The method followed is the same as that
used for the sensor readings (Sec. 3).  Figure 8 shows the linguistic description generated for a point on the robot path. As
before, a three-part linguistic spatial description is generated for that point.  See also [12] for details and more examples.

Figure 8. Building the environment representation for one point along the trajectory, shown with the
generated,  three-part linguistic expression.

5.  EXPERIMENTS

To test the compatibilit y of the two methods for producing comparable linguistic expressions, we created an environment
in the simulator and sketched an approximate representation on the PDA.  The two representations are shown side by side in
Figure 6. For the PDA sketch, environment objects are drawn using a boundary representation; the seven bounded figures
represent the environment obstacles. The desired robot trajectory is sketched relative to the environment and shown in the
Figure, starting from the left.

Using the methods described in Sections 3 and 4, the linguistic spatial descriptions are generated for corresponding robot
trajectory points in both environments. Figures 9 through 14 show representative points along the trajectory. The PDA sketch
is analyzed using a top-down view, but constrained by the effective radius of the robot’s sensors, as shown in the figures.
Only the portion of the object that fall s within the sensor radius is used to generate the linguistic descriptions. The
corresponding robot environment is analyzed using the simulated robot sonar sensors which provide an egocentric (relative)
view from the robot’s perspective. The object representations built from the sonar sensors are shown on the figures as
overlaid trapezoids.

Object is mostly to the left of the Robot
but somewhat to the rear

(the description is satisfactory)



An object is to the right-front of the robot.
-

An object is mostly in front of the robot
but somewhat to the left.

An object is to the right of the robot
but extends to the rear relative to the robot.

An object is to the left of the robot
but extends to the rear relative to the robot.
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Figure 9.  Position 1.  The first point along the robot trajectory.  The PDA sketch is shown on the top left with the
effective sensor radius used for the experiments. The corresponding robot simulator view is shown on the bottom left
with the object representations built from the sonar sensors overlaid as trapezoids.  The generated linguistic spatial
descriptions are shown on the right for each environment.  Note the robot heading.
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Figure 10.  Position 2.

Object A is to the right-front of the robot.
-

Object B is mostly in front of the robot.
but somewhat to the left

Object A is to the right of the robot
but extends to the rear relative to the robot.

Object B is to the left of the robot
but extends to the rear relative to the robot.



An object is mostly behind the robot
but somewhat to the right.

An object is mostly to the left of the robot
but somewhat to the rear.

An object is mostly to the left of the Robot
but somewhat to the rear.

An object is to the left-front of the robot.
-
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Figure 11.  Position 3.
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Figure 12.  Position 4.

Object A is mostly behind the robot
but somewhat to the right.

Object B is mostly to the left of the robot
but somewhat to the rear.

Object B is to the left of the Robot
-

Object C is to the left-front of the Robot
-



An object is to the left of the robot
but extends to the rear relative to the robot.

An object is in front of the robot.

An object is behind-left of the robot.
-

An object is mostly to the left of the robot
but somewhat forward.

An object is to the right-front of the robot.
-
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Figure 13.  Position 5.
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Figure 14.  Position 6

Object C is to the left of the robot
-
Object D is in front of the robot
but extends to the left relative to the robot.

Object D is mostly behind the robot
but somewhat to the left.

Object E is mostly to the left of the robot
but somewhat forward.

Object F is to the right-front of the robot.
-



There are objects on the left of and
on the right of the robot.

                

Figure 15.  An example showing groups of objects sensed. (a) A top view of the environment  (b) The robot senses 4
objects of the left and 4 objects on the right. (c) The high-level linguistic description generated, using object grouping.

The generated linguistic expressions in Figures 9 through 15 mostly agree between the two representations. However, in
some cases, e.g., when there are a large number of objects in the environment, the description may be more detailed than
necessary or even too detailed to be useful.  We have also been developing a grouping algorithm that is used to generate a
less detailed description. An example is shown in Figure 15, which is a view of the previous environment but scaled so that
the robot is much farther from the obstacles.  In this case, there are several objects sensed on both the left and right sides, 8
individual objects in total.  The generated description is shown in Figure 15(c), which provides a higher level interpretation
of the robot’s situation. Detail s on the grouping algorithm wil l be discussed in a forthcoming paper [13].

6. CONCLUSIONS

In this paper, we have shown how the histogram of forces can be used to generate linguistic spatial descriptions
representing the quali tative state of a mobile robot.  We have described two ways in which spatial relations can be used for
robot navigation. The robot can be a physical robot moving in an unknown environment with range sensors to interpret its
environment, as well as a virtual robot whose environment and trajectory are sketched on a PDA.  A boundary approximation
of the obstacles is made, and their vertices are used as input to the histogram of forces. The approach is computationally
efficient, and the spatial descriptions can be generated in real time.

We have presented an experiment in which a robot is placed in a physical environment, and a corresponding
approximation is sketched on a PDA. The results show that the linguistic descriptions generated from the two different
representations are comparable. This provides justification for this novel approach to human-robot interaction, namely
showing a robot a navigation task by sketching an approximate map on a PDA. The approach represents an important step in
studying the use of spatial relations as a symbolic language between a human user and a robot for navigation tasks.

As an extension, we are developing algorithms to incorporate other spatial relations, such as surrounds, and distance, such
as close or far. The surrounds relation is determined directly from the histogram of forces. The distance descriptions are
generated after processing the range information returned from the robot’s sensors or the distances calculated from the PDA
sketch. In some cases, a less detailed description is more useful, and we are also working on generating multi-level linguistic
descriptions.

Future work may utilize linguistic spatial descriptions to facil itate natural communication between a human and a robot
(or a group of robots). Image spatial analysis can be used to provide a direction relative to something in the image. For
example, the user can issue instructions such as go to the right of the building, or go behind the building.
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