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[1] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396, 2016.
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[2] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas, “Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial
networks,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5907-5915.
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[3] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He, “Attngan: Fine-grained text to image generation with attentional generative adversarial networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1316—-1324.
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INCEPTION SCORES ON THE THREE DATASETS OBTAINED BY PREVIOUS THE VS SIMILARITY SCORE ON THE THREE DATASETS BY PREVIOUS

Overview TEXT-TO-IMAGE MODELS AND OUR HFGAN. THE SCORES OF EXISTING MODEL [2] [18] AND OUR MODEL
APPROACHES ARE REPORTED IN THE RESPECTIVE PAPERS. THE
HIGHEST SCORES ARE SHOWN IN BOLD. Mot Dataset
ctho Oxford-107 CUB COCO
Task 1 Vethod Dataset StackGAN [2] | 278 £.134 228 * 162 7
ethod R - HDGAN [18] | .296 +£.131 246 +.157 .199 +.183
Oxford-102  CUB_ _COCo Our HIGAN | 303 £.137 2353 £.165 227 =185
GAN-INT-CLS [1] | 2.66 £ .03 2.88L .04 T7.88+.07
Task 2 GAWWN [19] / 3.60 + .07 /
StackGAN [2] | 3204+ .01 3704 .04 845+ .03 TRAINING TIME (S) / EPOCH
StackGAN++ [3] / 3.84 + .06 /
g TAC-GAN [29] 3.45 £ .05 / / Dataset Oxf-102 CUB
AttenGAN [4] / 4.36 & .03 25.80 &+ 47 : S o
HDGAN [18] 3454 .07 4.15+.05 11.86+.18 AttnGAN [4] 446-9- 93” 54
Our HIGAN 357 £.05 448L.04 2753L.25 Our HfFGAN 308.57  5614.73
Task 4
Summary
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[1] Wang, Wei, et al. "Recurrent face aging." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[2] Zhang, Zhifei, Yang Song, and Hairong Qi. "Age progression/regression by conditional adversarial autoencoder." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[3] Wang, Zongwei, et al. "Face aging with identity-preserved conditional generative adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
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i Experiments

Datasets

Introduction

Overview Table 1: Image numbers in each age group of UTKFace.

Age group 0-5 6-10 11-20  21-30  31-40  41-50  51-60  61-70  71-80 80+

Numbers 2204 850 1645 7736 4316 2091 2192 1160 676 530

Task 2
Implementation Details

Task 3
Implemented on PyTorch3

o Tested on a single Nvidia GeForce GTX 1080 Ti GPU with 50GiB memory
Applied batch normalization
Set a fixed learning rate of 0.0002.

Summary

Shenzhen University

Wednesday, December 1, 2021




UNIVERSIT

el Face Aging Results

Introduction

Overview

Task 2

Task 3

Task 4

Summary

Wednesday, December 1, 2021 Shenzhen University




UNIVERSIT

il Detailed Comparison with IPCGAN

Introduction

Input face

Overview

Our LGGAN
Task 2
Task 3
[PCGAN IPCGAN
Task 4
Summary 0-5 60-70

(b)

Wednesday, December 1, 2021 Shenzhen University



UNIVERSIT

iCe Quantitative Evaluation

Table 1: Estimated Age Distributions on UTKFace. Generic is the mean value of each age group
computed using the ground truth ages. Value in brackets shows the absolute differences from the
ground truth mean age. Best value with minimize differences from generic are shown in boldface.
* represents the models that we re-trained on 10 age groups.

Aging Agegroup 2130 3140 4150  51-60 6170  71-80 80+

Accuracy: Generic 25.03 35.01 45.12 54.63 65.40 73.66 87.29
CAAE* [34] 24.31(0.72) 32.43(2.58) 42.21(2.91) 51.49(3.14) 60.17(5.23) 70.57(3.09) 82.68(4.61)

IPCGAN* [31] 22.74(2.29) 31.74(3.27) 39.93(5.19) 50.04(4.59) 58.32(7.08) 68.42(5.24) 80.33(6.96)

Ours  26.18(1.15) 36.91(1.10) 44.68(1.44) 51.79(2.84) 62.52(2.88) 71.05(2.61) 88.24(0.95)

Introduction

Overview

Table 2: Face verification results on UTKFace. The
Task 2 top is the Verification Confidence by our LGcGAN
and the bottom is the verification rate for three meth-
ods. Best values for Verication Rate are indicated in

bold.
Task
ask 3 Id t.t Age group 21-30 31-40 41-50 51+
enti y Verification Confidence
1 3 10-20 95.76 94.78 94.65 93.28
Task 4 preservatlon' 21-30 - 95.74 94.54 93.77
as 3140 - - 95.129432
41-50 - - - 9464
Verication Rate
CAAE [34] 87.05 81.07 73.36 60.25
Summary IPCGAN [31] 100 100 100 100
ours 100 100 100 100
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Introduction

Overview

k3 . . : . . .

fas Given an audio clip and an arbitrary face image, automatically produce a
talking face video with lip movements synchronizing with the input audio.

Task 4

Summary
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Summary

[1] Vougioukas, Konstantinos, Stavros Petridis, and Maja Pantic. "End-to-end speech-driven facial animation with temporal gans." arXiv preprint arXiv:1805.09313 (2018).
[2] Chung, Joon Son, Amir Jamaludin, and Andrew Zisserman. "You said that?." arXiv preprint arXiv:1705.02966 (2017).
[3] Chen, Lele, et al. "Hierarchical cross-modal talking face generation with dynamic pixel-wise loss." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

Wednesday, December 1, 2021 Shenzhen University




UNIVERSIT

gl Votivation

Introduction

Audio-to-Video Video-to-Words Space

Generate high-resolution

ﬁ talking face videos that are:
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Overview
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1 from the input face
Task 3 lable words frames 1 2 v 16
0 About 0 ima ges
1 Absolutely 1 N
2
TaSk4 2 Ab‘-lse .. en
| 497 Years Audio reconstruction loss
498 Yesterday  |[[~""""""" *> e 498
Summary 499 Young 499

Wednesday, December 1, 2021 Shenzhen University




UNIVERSIT
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Inputs:

Introduction Audio feature processing
Landmark feature processing
Image feature processing
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Task 3 ‘%
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Task 3
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Task 4 1
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il Experiments

Introduction Datasets
Training: LRW
Overview
500 words

In each word class, there are 1,000 training video samples, 50 test samples and 50 validation samples.

Test: LRW and GRID

GRID contains 33 speakers, each uttering 1,000 short phrases

Task 3
Evaluation Metrics Nvidia GeForce GTX 1080 Ti
Task 4 Structural Similarity Index (SSIM) 50GiB memory
Peak Signal-to-Noise Ratio Batch normalization
Summary (PSNR) Learning rate: 0.0002
Landmark Distance Error (LMD) Adam algorithm
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i Two Layers of Attention Maps

Introduction

Overview

Task 3
Task 4
Attention masks generated for the coarse (top) and fine (middle) levels and the resulted
SO image frames (bottom).
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4Sl Detailed Comparison

Introduction

Overview

Task 3

Task 4 Our AVWhnet Chen et al. [3]

Our AVWhnet Chen et al. [3]

Summary
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iCe Quantitative Evaluation

Quantitative evaluation on LRW and GRID testing

Introduction datasets. Best scores are shown in boldface.
LRW GRID
_ Method SSIM  PSNR LMD | SSIM PSNR LMD
Overview Chung[5] | 0.71 2831 3.19 | 0.74 2846  3.03 SSIM: Structural Similarity Index
Chen [4] 0.75 30.04 297 0.77 3161 2.88 PSNR: Peak Signal-to-Noise Ratio
Our AVWhnet 0.82 31.24 2.84 0.84 32.03 2.79 LMD:Landmark Distance Error
5 Synchronization rate Frame smoothness
4.5
4
3.5
3
Task 3 2'2
1.5
1
0.5
Task 4 0
Synchronization Smoothne Image quality
(a) mAVWnet mChen et al[4] (b) = AVWnet = Chen et al.[4] equal

Summary User study on videos generated using the proposed

AVWhnet and the state of-the-art method.
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Introduction

Overview

7 \

Geetha Kanchil'r-;. : | Ben Lustenhouwer Christine Lashlé;’
20 strokes 100 strokes 200 strokes
(b)
Task 4
Given an input image, generate a sequence of paining stokes that can be
S applied to a blank canvas in a stroke-by-stroke manner and reproduce the
ummary

designed input.
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Introduction (1] Arbitrary-
Style transfer T Style-
Transfer!ll
Overview
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[
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Deep

Task 4 Reinforcement r Ty Vq Y’ 1
Learning3! /
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Summary

[1] Huang, Xun, and Serge Belongie. "Arbitrary style transfer in real-time with adaptive instance normalization." Proceedings of the IEEE International Conference on Computer Vision. 2017.
[2] Ha, David, and Douglas Eck. "A neural representation of sketch drawings." arXiv preprint arXiv:1704.03477 (2017).
[3] Ganin, Yaroslav, et al. "Synthesizing programs for images using reinforced adversarial learning." International Conference on Machine Learning. PMLR, 2018.
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Previous Work

Deep Reinforcement

Learningl3!
S’
r-~-> RN -~~~ .
Action  Canvas Target Image Action  Rendered Image Target Image E
S : S"J
!_] * E‘ E Replay Buffer—> Renderer 2
Renderer [ | S i

Training samples
I i |_lﬁ ]
v

Critic Critic Reward —
l Canvas ¢ V(s) <:| Discriminator

Q(s, a) V(s) Reward

Original Deep Deterministic Model-based DDPG RL algorithms for painting 4!
Policy Gradients (DDPG)

[4] Z. Huang, W. Heng, and S. Zhou. Learning to paint with model-based deep reinforcement learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 8709-8718, 2019.
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Introduction

Overview
Better mimics the painting process
used by human artists:

1) Pay more attention to
foreground content rather
background details.

2) Paint important regions with
finer brushes.

Task 4

Summary
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Attention-Aware Painting via Deep Reinforcement Learning

Introduction

Overview
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Summary Feature masked losses
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il Attention & Feature Mask

Introduction

Attention network:
Overview Prioritize areas that contain high
saliency foreground subjects.

canvas

\.
!

Feature mask: Cfocus(t Crocus(t) Crocus(t+1)
Act as a weight for pixel distances
between paintings and the target
image

Guide the agent to accurately capture
Task 4 the appearances of important and
recognition-related regions.

focused
canvas

Feature masked loss
Summary
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Overview
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Summary
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an

Proposed method Huang et all4l Zou et all®]

Introduction

Overview

Task 4

Summary

[4] Z. Huang, W. Heng, and S. Zhou. Learning to paint with model-based deep reinforcement learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8709-8718, 2019.
[5]J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages
2223-2232, 2017.
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Introduction

Overview

Task 4

Summary

Input Manual paintings by artists Ours
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el Conclusions

* Approaches were proposed to address four different visual synthesis tasks:

Introduction * HfGAN is better in generating consistent and high-quality images because the hierarchical
feature maps’ fusion can fully extract and utilize the local and global features.

* LGcGAN the transition pattern at different ages and performs well in preserving personal
identity and keeping face-aging consistency.

* AVWhnet can generate talking face videos with better audio-lip consistency and higher frame
qguality.

* The proposed end-to-end attention-aware reinforcement learning approach for painting like
humans better approximates the target image under small number of strokes and capture finer
foreground details in the final results.

Overview

Summary
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e Xin Huang, Mingjie Wang, & Minglun Gong: Hierarchically-fused generative
Introduction adversarial network for text to realistic image synthesis. Conference on Computer
and Robot Vision. Kingston, ON, Canada, May 29-31, 2019. (Best Paper Award)

e Xin Huang, Mingjie Wang, & Minglun Gong: Fine-grained talking face generation
with video reinterpretation. The Visual Computer. October 2020.

Overview

e Xin Huang & Minglun Gong: Landmark-guided conditional GANs for face aging.
International Conference on Image Analysis and Processing. Lecce, Italy, May 23-27,
2022.

* Huang, Xin & Minglun Gong. Attention-Aware Neural Painting via Deep
Reinforcement Learning. Neurocomputing (under review).

Summary
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e Abstract:

* Conditional visual synthesis is the process of artificially generating images or videos that satisfy desired
constraints. Individual visual synthesis tasks, such as high-fidelity natural image generation, artwork
creation, and face animation, have many real-world applications. With advances in deep learning, methods
for conditional visual synthesis evolve rapidly in recent years, making it one of the hottest research fields in
Computer Vision and Graphics. Many of these recent approaches are based on Generative Adversarial
Networks (GANs), which has a strong ability to generate samples following almost any implicit distribution,
allowing the synthesis of visual content in an unconditional or input-conditional manner. However, GANs
still have many limitations, such as difficulty in directly approximating high-resolution image distributions,
poor model generalization ability on unpaired datasets, and limited power for mimicking human actions.
This talk introduces efforts for tackling these limitations and for handling different conditional visual
synthesis tasks.

* The first task is the generation of high-resolution images that are conditioned by text inputs. A novel end-
to-end hierarchically-fused GAN is developed, which trains only one generator-discriminator pair to
synthesize images from coarse to fine resolution levels. The second task is to simulate facial changes based
on desired ages. Facial landmarks are extracted to guide the synthesis and a symmetric framework is
employed to enhance both age and identity consistency. The third task aims to synthesize realistic talkin
face videos that are conditioned by audio inputs. A coarse-to-fine tree-like architecture is designed, whic
not only ensures synchronization with input audios but also maintains visual details from input face photos.
The objective of the final task is to generate painting stroke sequences that can recreate input images. An
attention-aware end-to-end deep reinforcement learning framework is developed to better imitate human
painting actions. Both qualitative and quantitative validation experiments are conducted for each proposed
methods. Comparisons with existing works demonstrate the respective merits of these techniques.
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