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Outline

• Introduction
– A brief history of image processing
– Image-to-Image translation problem

• Two approaching routes
– A rule-based approach
– A data-driven approach
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Brief History of Image Processing

Photograph

1600-1960

Leica, Zeiss, 
Kodak, Fuji

Simple photo 
editing

Digital Camera & 
PC

1960-2010

Canon, Sony, 
Nikon

Photoshop

Digital image 
processing

Smart phone & 
mobile apps

2010-2016

Instagram, 
Pinterest, Flickr

Snapchat, Prisma, 
Meitu, 

MomentCam

Intelligent image 
processing

Smart camera, VR, 
AR

2015-current

Ubiquitous image 
processing

Autonomous 
vehicle, Internet 

of Things
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Image-to-Image Translation

• Many problems in image processing, computer 
graphics, & computer vision can be posed as 
translating an input image to a corresponding 
output image
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Problem Input Output
Edge detection Natural image Edge map

Image segmentation Natural image Label map

Saliency detection Natural image Saliency map

Image colorization Grayscale image Color image

Image stylization Natural image Stylized image

Sketch-to-photo synthesis Sketch Natural image
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Two Approaching Routes

• Rule-based:
– Different tasks call for 

different algorithms
– Algorithms are 

customized for the tasks

• Learning-based:
– Different tasks can be 

solved under the same 
framework

– Data-driven
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Face Photo Stylization based on 
a Single Exemplar

Rule-based Approach:
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Problem Statement

• Image stylization aims to automatically generate 
stylized images by manipulating photographs
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Algorithm
Input 
image

Output 
image

Exemplar images or 
style description
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Categorization of Previous Methods

• By output type
– Photorealistic vs. non-photorealistic

• By requirement of external resources
– Example-based, data-driven, interactive

• By extent of automation
– Semi-automatic vs. fully-automatic

• By level of understanding/processing
– Low-level, middle-level, high-level stylization
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Pencil Drawing Production

• Combining Sketch and Tone for Pencil Drawing 
Production [Liu et al., NPAR 2012]
– Fully-automatic
– Non-exemplar-based
– Non-photorealistic
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Color and Tone Stylization

• Automatic Content-Aware Color and Tone 
Stylization [Lee et al., CVPR 2016]
– Data-driven
– Fully-automated
– photo-realistic/naturalistic
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Cartoon Face Synthesis

• Data-Driven Synthesis of Cartoon Faces Using 
Different Styles [Zhang et al., TIP 2017]
– Data-driven
– Fully-automatic
– Non-photorealistic
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Limitations of Existing Methods

• Most are style-specific methods:
– Use heuristically designed algorithm to generate 

results under a given style
• Pencil drawing, stippling, etc.

– Cannot be applied to general-purpose

• Some are data driven methods:
– Require a large number of training data
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Our Objective

• Our goal is to achieve general stylization with a 
single exemplar image
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+
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Two Step Approach
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Example

Color
Transfer

Texture
Transfer
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Semantics-aware Color Transfer

• Assigns a color for each pixel in the input 
image by finding its correspondence in the 
exemplar

• The correspondence is found by minimizing a 
cost function that consists of 3 terms:
– Semantic term
– Geometry term 
– Color term
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Semantics-aware Color Transfer
16

Face
landmark

label
assignment

dense
correspondenceColor transfer

face  
detection & 

normalization

320×448 image
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Semantic Term

• Evaluates the incompatibility among different facial 
parts
– Heuristically defined
– Prevent incompatible mapping, e.g. eyes in input image 

to nose or mouse in exemplar

Eye Eyebrow Nose Mouth Face

Eye 0 ∞ ∞ ∞ 1

Eyebrow ∞ 0 ∞ ∞ 1

Nose ∞ ∞ 0 ∞ 0

Mouth ∞ ∞ ∞ 0 1

Face ∞ ∞ 0 1 0
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Geometry Term

• Measures the geometric cost between the 
pixel in input image and its correspondence 
in exemplar image

• Directly using the Euclidean distance does 
not tolerate the pose and shape differences
– Warp the exemplar to align with input face 

before computing the geometry term
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Color Term

• Measures the color cost between a pixel in 
input image and its correspondence in 
exemplar

• To accommodate the overall intensity 
differences between 2 images, histogram 
equalization is performed first
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Effects of Different Terms
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Edge-preserving Texture Transfer

• The generation of paintings and artworks is 
treated as a texture synthesis problem
– Need to handle texture at multiple scales

• Textures show up many scales and may have distinct 
characteristics at each scale

– Need to preserve edges
• Chin line, eye/eyebrow boundaries, and mouth/nose 

curves are essential for keeping face identities
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Optimization-based Texture Synthesis

• First optimize:
– Finding the Nearest 

Neighbor Field (NNF) 
using generalized 
PatchMatch

• Then vote:
– Averaging the nearest 

neighbors
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Edge Masks Generation

• To preserve edges and structures:
– First compute an edge map for the input image
– Then create its lower resolution versions
– These edge pixels are masked from texture synthesis
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Coarse-to-fine Processing

• The texture is synthesized in a pyramid manner:
– First synthesize the lower resolution version and for 

unmasked areas only
– Enlarge the result image and repeat texture synthesize
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Experiment Result
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Comparison with Real Artworks
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Comparison with Image Melding & Quilting
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Conclusions

• A general face photo stylization approach 
that requires a single exemplar
– Able to handle a wide range of face photos

• Gender, skin color, hair style, face accessories, beards, 
glasses, variation in poses & lightening conditions

– Able to transfer wide varieties of styles
• Pencil drawing, sand drawing, oil painting, mosaic, 

screening, water color painting, Chinese painting, & 
Pyrography
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Limitations

• Employed semantic information to guide the 
stylization
– Only work for face photos

• The algorithm is heuristically designed
– Not an end-to-end system
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Unsupervised Dual Learning for 
Image-to-Image Translation

Data-driven Approach:
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Advantages of Deep Neural Network

• End-to-end training
– A DNN can be treated as a black box
– Only need to fuel the networks with training data

• General-purpose solution
– A solution to one task can often be adapted to 

another task, as long as new training data are 
provided

• Semantic-aware
– Utilize the pattern recognition power of DNN
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Related Work

• Before 2014: traditional methods
• 2014-2016: Application-specific solution

– FCNs
– GANs
– cGANs

• 2016: general-purpose solution
– cGAN (supervised learning)
– Cross-domain (pre-trained third-party 

representations)
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Convolutional Neural Network (CNN)

• LeNet for document recognition [LeCun et al]:
– Combines convolution layers & subsampling layers
– Connections are between local neurons

• Avoid full association

– Sharing of weights
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Fully Convolutional Networks (FCN)

• DNN can also be used for training generative 
models
– Learning deconvolution network for semantic 

segmentation [Noh, et al. ICCV 2015]
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Input Output
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Adversarial Samples

• It is easy to generate 
adversarial samples to 
fool a discriminative 
DNN
– Adversarial samples can 

make the discriminative 
DNN more robust

– More efforts are then 
needed to generate 
adversarial samples
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Generative Adversarial Networks (GAN)

• GANs extend the idea of using to generative 
DNN:
– Train Generator & Discriminator together and 

against each other
• Generator generates fake samples to fool the 

Discriminator
• Discriminator tries to distinguish between real & fake 

samples

– Repeat this and we get better Generator and 
Discriminator
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Conditional GAN (cGAN)
37

• Image-to-image translation with conditional 
adversarial networks [Isola, et al 2017]
– Learn both the mapping from input image to output 

image and a loss function to train this mapping
– Makes it possible to apply the same generic approach to 

different problems
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Limitations of Existing Methods

• Requires a large 
number of labeled & 
matching image pairs
– Data labeling is 

expensive & sometimes 
impractical

– Matching image pairs 
could be misaligned or 
contain slightly different 
contents
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Dual Learning

• Dual learning for machine translation [He et. al 
2016]

39

我讲中文
I speak 
English
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Our Objective

• Develop an unsupervised learning framework
– For general-purpose image-to-image translation
– Only relies on unlabeled image data
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DualGAN

• Prime task is to learn a generator GA : U→V
– Dual task is to train an inverse generator GB : V→U

41

GA

GB
U V
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DualGAN Architecture
42

• Two GANs:
– Primal GAN learns the generator GA & a discriminator DA

– Dual GAN learns the generator GB & a discriminator DB

• Reconstruction loss is minimized
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Loss Functions

• Loss function for Discriminators

• Loss function for Generators
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Experiments

• Datasets

44

Dataset Image 
size

# Training 
samples Labeled Features

PHOTO-SKETCH 128*128 ~1000 Yes Minor 
misalignment

AERIAL-MAPS 256*256 ~2000 Yes Slight 
misalignment

FACADES-LABEL 256*256 ~400 Yes Slight 
misalignment

DAY-NIGHT 512*512 ~100 Yes Slight content 
difference

CHINESE-OIL 512*512 ~1000 No

MATERIAL 512*512 ~100 No
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Day → Night TranslaƟon
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Photo → Sketch TranslaƟon
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Sketch → Photo TranslaƟon
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Facades → Label TranslaƟon
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Label → Facade TranslaƟon
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Aerial Photo → Map TranslaƟon
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Map → Aerial Photo TranslaƟon
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Material Transfer
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Evaluation

• Two user studies were conducted through 
Amazon Mechanical Turk (AMT)
– AMT is an online platform where a number of 

Human Turkers are hired to evaluate 
experimental results or label data

• Quantitative evaluation is also performed on 
image segmentation results
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Image Realness Test

• Run AMT test on 4 translation results:
– sketch→photo, label map→facades, 

maps→aerial photo, day→night

• Randomly shuffle real photos & outputs from 
GAN, cGAN, and DualGAN
– Each image is shown to 20 Turkers, who score the 

“realness” of the image
– Score ranges from: 0 (totally missing), 1 (bad), 2 

(acceptable), 3 (good), to 4 (compelling)
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Average Realness Scores

Task DualGAN cGAN[4] GAN Real 
Photo

sketch→photo 1.87 1.69 1.04 3.56

day→night 2.42 1.89 0.13 3.05

label→facades 1.89 2.59 1.43 3.33

map→aerial 2.52 2.92 1.88 3.21
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Material Perceptual Test

• Evaluates the material transfer results
– Mix the outputs from all material transfer tasks

• A total of 176 output images

– Each image was evaluated by 10 Turkers
• Turkers choose the best match based on which 

material they believe the objects in the image are 
made of

– A output image is rated as successful if at least 3 
Turkers selected the target material type
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Successful Material Transfer Rates

Task DualGAN GAN

plastic→wood 2/11 0/11

wood→plastic 1/11 0/11

metal→stone 2/11 0/11

stone→metal 2/11 0/11

leather→fabric 3/11 2/11

fabric→leather 2/11 1/11

plastic→metal 7/11 3/11

metal→plastic 1/11 0/11
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Segmentation Accuracy

DualGAN cGAN GAN
Per-pixel acc. 0.27 0.54 0.22
Per-class acc. 0.13 0.33 0.1
Class IOU 0.06 0.19 0.05
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DualGAN cGAN GAN
Per-pixel acc. 0.42 0.7 0.41
Per-class acc. 0.22 0.46 0.23
Class IOU 0.09 0.26 0.09

Accuracy for the facades→label

Accuracy for the aerial→map
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Conclusions

• A novel unsupervised solution to general-
purpose image-to-image translation
– The unsupervised feature enables many more 

real world applications
– Improves the outputs of vanilla GAN for various 

image-to-image translation tasks
– With unlabeled data only,  DualGAN can 

generate comparable or even better outputs 
than conditional GAN that can only be trained 
with labeled data
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More Recent Works

60Thursday, September 20, 2018 Shenzhen University



Scale-Aware Image Fusion

• Objectives:
– Learn scale-disentangled image 

representations/codings with GAN
– Generate images in more controllable manner
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Proposed Model
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Results
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Manipulation of Image Generation

• Train a GAN for high-resolution image 
generation

• Train an encoder that maps an image to 
codes

• Adopt user inputs from a painting panel
• Optimize the image codes to fit user inputs

– Gradient descent

Thursday, September 20, 2018 Shenzhen University 64



Results
Thursday, September 20, 2018 Shenzhen University 65



66

Questions?
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Abstract

• Many image processing and computer vision tasks, such as image 
segmentation, stylization, and abstraction, can be posed as image-to-
image translation problems.  This talk presents two different image-to-
image translation approaches, one is rule-base and the other is learning-
based.

• The rule-based algorithm is capable of stylizing an input face photo using 
a single exemplar image.  Since the numbers and varieties of patch 
samples are highly limited, special cares are put into sample selection to 
best preserve the identity and content of the input face.  A two-phase 
procedure is also designed, where colors are transferred first in a 
semantic-aware manner, followed by edge-preserving texture transfer.

• The learning-based algorithm employs Conditional Generative 
Adversarial Networks (GANs) to perform general cross-domain image-to-
image translation.  It requires a large set of training images, but unlike 
existing approaches, the images do not need to be labeled.  To train in an 
unsupervised manner, two GANs are constructed to translate images in 
opposite directions, forming a closed loop.  As a result, images from 
either domain can be translated to the other and then reconstructed, 
enabling a reconstruction error term for training.
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