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• LeNet: 1998
• AlexNet: 2012
• VGG-16: 2014

• GoogLeNet: 2014
• ResNet: 2015

• SqueezeNet: 2016
• DenseNet: 2017

• ShuffleNet: 2018
• SENet: 2018

• EfficientNet: 2019

Introduction
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AlexNet (2012): 60M Parameters
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• Popularize Rectified Linear Unit (ReLU) to replace sigmoid or tanh as activation function.
• Overcome the gradient saturation problem.
• Allow models to learn faster and perform better.

• Apply dropout, which randomly removes neurons from propagation.
• Breaks co-adaptation among neural units.
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VGG-16 (2014): 138M Parameters
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• Train much deeper network.
• Roughly twice as deep as AlexNet.

• Replace convolution kernels of different sizes by stacking uniform (3×3) convolutions.
• Reduce hyperparameters.
• Save computational cost by using small kernel sizes.
• Has been adopted as the pretrained model for most of downstream tasks.
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GoogLeNet/Inception-v1 (2014): 7M Parameters
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• Introduce inception module
• Stack together outputs of pooling layer and 

convolution layers with different filter sizes.
• Strengthen the regularization and scale invariance of 

extracted features.
• Use 1×1 convolutions for dimensionality reduction.
• Introduce two auxiliary classifiers.
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ResNet (2015): 26M Parameters
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• Popularise skip connections to form residual blocks.
• Allow training very deep networks (1,000+ layers).

• Additional layers won’t hurt the performance due to skip connections.
• Among the first to use batch normalisation to handle internal covariate shift.
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DenseNet (2017):
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• Provide a new paradigm of refining 
features in a densely-connected 
manner.

• Within each dense block, features 
from all preceding-layer are reused.
• Concatenated together instead 

of added.
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SENet (2018):

Introduction
• Explicitly model the inter-dependencies 

between the channels of convolutional 
features.

• Perform dynamic channel-wise feature 
recalibration.

• Use global information to emphasize 
informative features and suppress less 
useful ones

Squeeze-and-Excitation Residual Block

𝐻𝐻 × 𝑊𝑊 × 𝐶𝐶

1 × 1 × 𝐶𝐶

1 × 1 ×
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• Classification:
• Predict discrete labels.
• Find accuracy decision boundaries. 

• Computer vision problems:
• Image Classification
• Gender Detection
• Semantic/instance Segmentation…

• Regression:
• Predict continuous quantities.
• Find the best fitting line.

• Computer vision problems :
• Crowd Counting
• Age Estimation
• Object Localization…

Introduction
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Introduction
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Crowd Counting

Introduction

JHU-CROWD++: A large-scale unconstrained crowd counting dataset
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and Stochastic Feature Reuse for 
DenseNets 
WACV 2019
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Background on Stochastic Regularization

Classification
#1

(a) Dropout (neurons) (b) Drop Connect (connections)

(c) Stochastic Depth (depth)
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needed?

Can we 
regularize in 

the dimension 
of cardinality?
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Motivations

DenseNet progressively 
increases cardinality by 

reusing ALL features from 
previous layers

Regularization has been 
attempted along the 

dimensions of network 
width and depth

Can we feed 
multi-scale 

kernel output 
to DenseNet?

Classification
#1

Inception shows the 
benefit of 

convolutions with 
different kernel sizes

Stochastic 
Feature Reuse

Multi-scale 
Convolution 
Aggregation
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Stochastic Feature Reuse (SFR)

• Mask tensor 𝑀𝑀𝑙𝑙 obeying Bernoulli distribution is randomly 
generated for each layer during each mini batch.

𝑓𝑓𝑙𝑙+1 = 𝑀𝑀𝑙𝑙𝑥𝑥𝑙𝑙 = 𝑀𝑀𝑙𝑙 ⋅ 𝐻𝐻𝑙𝑙 𝑓𝑓0,𝑓𝑓1, … , 𝑓𝑓𝑙𝑙−1

Classification
#1
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Multi-scale Convolution Aggregation (MCA) Module

MCA Module Dense Block

Classification
#1
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• Involve 3 steps:
• Multi-scale Convolutions

• M x, W = Concat(G1×1 x, W1 , G3×3 x, W3 , G5×5 x, W5 , G7×7 x, W7 )
• Cross-scale Aggregation

• M x, W = Concat(w1G1×1 x, W1 + w3G3×3 x, W3 , w5G5×5 x, W5 + w7G7×7 x, W7 )
• Maxout Activation

• M x, W = Concat(Maxout(w1G1×1 x, W1 + w3G3×3 x, W3 ),
• Maxout(w5G5×5 x, W5 + w7G7×7 x, W7 ))

• The final output of MCA module is fed it into the first Dense Block.
• Replace the original Initial Layer with a highly non-linear transformation between input image 

and the dense block. 

Classification
#1
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• CIFAR-10, CIFAR-100 and SVHN
• CIFAR-10: training (50,000), testing (10,000), 32×32 resolution, 10 classes.
• CIFAR-100: training (50,000), testing (10,000), 32×32 resolution, 100 classes.
• Street View House Number: training (73,257), testing (26,032), additional training (53,1131), 

32×32 resolution, 10 classes.

• Normalization Methods
• CIFAR datasets: Subtract mean values and divide standard deviations.
• SVHN: Divided by 255.

• Details of Training Configurations
• 350 epochs for CIFAR and 40 epochs for SVHN.
• Initial learning rate is 0.1 and divided by 10 at epochs 150, 225 and 300 for CIFAR and epochs 20 

and 30 for SVHN.
• Weight decay 0.0001 and Nesterov momentum 0.9.
• Dropout probability 0.8 and He Initialization of weights.

Classification
#1
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• Under growth rate k=24 and 
depth=40:
• Obtain the lowest 

classification errors on 
CIFAR-10 (5.38%) and CIFAR-
100 (23.78%)

• Use fewer parameters.

• Under k=40 and depth=40:
• Get impressive results on 

CIFAR-100 (22.65%) and 
1.61% on SVHN.
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Quantitative Evaluation on Classification Accuracy

Classification
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• The converged weights for different 
datasets are drastically different.

• The scales with high discrimination 
power are preserved, whereas the 
redundant ones are suppressed.

Weights CIFAR10 CIFAR100 SVHN

𝑤𝑤1 1.54 2.162 4.913e-3

𝑤𝑤3 0.694 1.022 -0.436

𝑤𝑤5 0.4179 0.555 9.96e-4

𝑤𝑤7 0.1701 0.3979 0.2333
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Adaptive Weights in MCA

Classification
#1
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• Place SFR operator at different locations of 
DenseNets.
• Adding dense block with SFR on the 

top of the DenseNet leads to best 
results.

• Ablation studies on the diverse growth 
rates of SFR, k=12, 24 and 40. 
• More effective on relatively wider 

DenseNets.
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Ablation Studies

Classification
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ADNet: Adaptively Dense 
Convolutional Neural Networks
WACV 2020
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Background on Attentions

Classification
#2

Spatial-wise attention in “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”

Channel-wise attention in “Squeeze-and-Excitation Networks”
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Motivations

Classification
#2

Can a network 
adaptively determine 
its connection density?

Can a compact 
model works 
equally well?

• Sparse connections
• Add kernel outputs 

together before 
activation

• Dense connections
• Concatenate 

features together.

ResNet
DenseNet

Adaptively 
Dense Net
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Dense Block

Composite Layer

Concatenation
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Overall Architecture of ADNet

Classification
#2
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Composite Layer

Classification
#2
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Hierarchical Features

1 × 1 Conv, ReLU

avg pool

1 × 1 Conv, ReLU

FC

Sigmoid

𝐼𝐼𝑙𝑙 = [𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑙𝑙−1]

global avg pool

𝐻𝐻 × 𝑊𝑊 × 𝐶𝐶

1 × 1 × 𝐶𝐶
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Layer Attention in our ADNet
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Layer Attention Net

Classification
#2
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𝐻𝐻 × 𝑊𝑊 × 𝑙𝑙 × 𝑛𝑛
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Channel Attention in SENet
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Quantitative Evaluation on Classification Accuracy
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Accuracy vs. Computational Costs
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Classification
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Distributions of Learned Layer Attention Weights

Wednesday, April 20, 2022 Memorial University 30

Classification
#2



Introduction

Classification
#2

Regression
#1

Regression
#2

Summary

Regression
#3

Classification
#1

• On simpler dataset (SVHN), 
the average weights have 
relatively high values 
(warmer colours).

• On more complex C100+, 
the weights show strong 
variations.

• Suggests that ADNet is 
capable of automatically 
determining the status of 
feature reuse. 
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Average Layer Attention Weights

Classification
#2
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Ablation Study on Layer Attention

Classification
#2

Test Error (%) of 28-layer ADNet
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Stochastic Multi-Scale Aggregation 
Network for Crowd Counting
ICASSP 2020
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Regression
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Background on Crowd Counting
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• Wide applications:
• Security
• Traffic control
• Social distance monitoring

• Challenges:
• Severe occlusions
• Scale variation & density shift
• Noisy background
• Overfitting

• Approaches:
• Detection-based

• Perform poorly on congested scenes.
• Regression-based

• Map to density maps then integrate.

Regression
#1

GT Count: 217

GT Count: 116

GT Count: 1603
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Scale Variation & Density Shift

Regression
#1

(b) Density Shift

(a) Scale Variation

Small Scale

Medium 
Scale

Large Scale
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Motivations

Use atrous
convolutions 
with diverse 
dilation rates

Fuse multiple 
branches 

stochastically

Disentangle global 
density check 

from density map 
generation

Hard to enforce global 
count using locally-

defined loss functions

Regression
#1

Stochastic Multi-
scale Aggregation

Auxiliary task on 
Global count

Scale diversity is 
restricted by the 

number of branches

Different branches 
may learn nearly 

identical 
representations
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SMAM: Stochastic Multi-scale Aggregation Module
GPE:      Global Prior Encoder
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Overall Architecture of SMANet

Regression
#1

Back-end
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Stochastic Multi-scale Aggregation Module (SMAM)

Regression
#1
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Forward training pass
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Training of Scale-Shake Unit

Regression
#1

Backward training pass
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Global Prior Encoder (GPE)
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Regression
#1

• Directly generate total count from shared features.
• Provide contraint on a global prior
• Disentangle overall density level estimation from local density map generation.
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Local Density Estimation
𝑀𝑀𝐺𝐺𝐺𝐺: Ground truth density map

Global Prior Consistency
𝑆𝑆𝐺𝐺𝐺𝐺: Ground truth count
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Objective Function
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𝑁𝑁: Batch size
𝑡𝑡: hyper-parameter for balancing between local and global supervisions 
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Estimation: 3391.34 GT Count: 3406

Estimation: 2712.78 GT Count : 2706
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Density Maps for Congested Scenes
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Dilation Rate =1

Dilation Rate =2

Dilation Rate =3

Dilation Rate =4

Dilation Rate =5

Dilation Rate =6
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Visualization of Multi-scale Feature Maps
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Unit 1

Unit 2

Unit 3

• Feature maps
generated by two 
branches with 
different dilation 
rates are not similar.
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Feature Cosine Similarity between Branches
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• Using the the global consistency (GPE) constantly 
performs better than withouth using it.

Wednesday, April 20, 2022 Memorial University 46

Ablation Study on GPE
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Interlayer and Intralayer Scale 
Aggregation for Scale-Invariant Crowd 
Counting
Neurocomputing 2021
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Previous Work: S-DCNet

S-DCNet Count: 325.19

S-DCNet Count: 390.79

S-DCNet Count: 1076.46

Our Count: 302.46

Our Count: 410.05

Our Count: 1173.29

GT Count: 302

GT Count: 417

GT Count: 1171
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Motivations

Extract and fuse 
fine grain scale 

information
Use a single 

branch 
(column)

Scale varies 
continuously in 

congested scenes

Enlarge the 
diversity of 

training data

Huge variation in total 
count (density shift) 

demands high 
generalization capability

Multi-branch 
approaches are hard 
to train and tend to 

overfit

Single-column 
Scale-invariant 

Architecture

Randomly 
integrated loss 

function

Regression
#2
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Overall Architecture of ScSiNet

Regression
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Input
Backbone

SiT SiTSiT

Predicted 
Density Map

SiT

C C

SiT

C C

SiT: Scale-invariant Transformation 

• The dense connections between different SiTs provide inter-
layer (coarse grain) scale aggregation.
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Scale-invariant Transformation

Conv 3, DR=1

Conv 3, DR=2

Conv 3, DR=3

Conv 3, DR=4

Conv 3, DR=5

𝝏𝝏𝟏𝟏𝟏𝟏 − 𝝏𝝏𝟏𝟏

Intra-Layer
Scale Pyramid

𝝏𝝏𝟐𝟐
𝟏𝟏 − 𝝏𝝏𝟐𝟐

𝟏𝟏 − 𝝏𝝏𝟑𝟑

𝟏𝟏 − 𝝏𝝏𝟒𝟒

𝝏𝝏𝟑𝟑

𝝏𝝏𝟒𝟒

Stochastic
Scale Mixer

1 × 1 Conv

𝑭𝑭𝟏𝟏

𝑭𝑭𝟐𝟐

𝑭𝑭𝟎𝟎

𝑭𝑭𝟑𝟑

𝑭𝑭𝟒𝟒

𝑭𝑭𝟓𝟓

𝒙𝒙𝒍𝒍

1
×

1
Co

nv

• Each SiT contains a pyramid of dilated convolution filters, 
which provides intra-layer (fine grain) scale fusion.
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Randomly Integrated Loss

Regression
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ScSiNet

Gradients
𝒍𝒍𝟏𝟏
𝒍𝒍𝟐𝟐
𝒍𝒍𝟑𝟑

𝒍𝒍𝟒𝟒 𝒍𝒍𝟓𝟓
𝒍𝒍𝟔𝟔
𝒍𝒍𝟕𝟕
𝒍𝒍𝟖𝟖
𝒍𝒍𝟗𝟗
𝒍𝒍𝟏𝟏𝟏𝟏
𝒍𝒍𝟏𝟏𝟏𝟏𝒍𝒍𝟏𝟏𝟏𝟏

𝒍𝒍𝟏𝟏𝟏𝟏
𝒍𝒍𝟏𝟏𝟏𝟏
𝒍𝒍𝟏𝟏𝟏𝟏
𝒍𝒍𝟏𝟏𝟏𝟏

GTs
……

……

• Previous approaches crop 
patches off-line and use 
them repetitively.

• Average loss is used for 
training.

• We crop patches online and sum the loss together.
• Provide a similar effect as randomly 

generating new implicit training images with 
larger range of density levels.

• Use datasets with different image resolutions 
directly without the needs for resizing.
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Quantitative Comparison on Counting Accuracy
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Qualitative Evaluation on Density Maps

Regression
#2

GT Count: 110 

GT Count: 353 

GT Count: 1858

Our Count: 109.99

Our Count: 353.22

Our Count: 1859.39
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Ablation Studies

Regression
#2

• The impacts of inter/intra-layer scale 
fusion and the number of groups (G) in 
SiT on ShanghaiTech Part A dataset.

• The effectiveness of stochastic scale 
mixer on ShanghaiTech Part A (A), 
Part B (B), and UCF-QNRF (Q) 
datasets. 

• The effectiveness of the 
proposed uniform mini-batch 
training on ShanghaiTech Part A 
and UCF_CC_50.
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Effectiveness of Stochastic Scale Mixer

Regression
#2

Count: 265 

Count: 379 

Count: 243.04

Count: 364.18

Count: 203.73

Count: 319.43

(a) Original Image (b) Without Scale Mixer (c) With Scale Mixer (d) Ground Truth
Count: 1150.53 Count: 1426.94 Count: 1366 
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Cross-dataset Transferability and Scale-invariant Tests

Regression
#2

• Cross-dataset 
evaluation for 
transferability 
comparison.

• Scale-invariant 
Tests using down-
sampled images
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STNet: Scale Tree Network with Multi-
level Auxiliator for Crowd Counting
TMM, accepted with minor revision

Wednesday, April 20, 2022 Memorial University 58

Regression
#3



Introduction

Classification
#2

Regression
#1

Regression
#2

Summary

Regression
#3

Classification
#1

Wednesday, April 20, 2022 Memorial University 59

Previous Work: CANet

Regression
#3

Crowd Image Density Map GT

Our STNetCANet

• Confused by complex 
background noises (red 
boxes).

• Has difficulty handling 
scale variations (yellow 
boxes).
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Previous Work: ASNet

Regression
#3

ASNet Branch1 ASNet Branch2 ASNet

Crowd Image Density Map GT Our STNet

Estimated: 485

Estimated: 373

Count: 452
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Motivations

Amplify
the number of 

scales represented 
by a single layer

Train a single 
branch end-

to-end

Scale diversity is 
restricted by the 

number of branches

Enhance 
multi-level 

features to be 
crowd-aware 

Poor background 
cognition leads to false 

positive predictions

Multi-branch 
approaches are hard 
to train and poor in 

transferability

Scale-Tree 
Diversity 
Enhancer

Multi-level 
Auxiliator

Augment 
background 
samples for 
balancing

Regression
#3
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Overall Architecture of STNet

Regression
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Predicted 
Density Map

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑

𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠

Knowledge
transfer

Auxiliary 
Background

Input

Backbone

𝒓𝒓

Confidence 
Prediction

Background 
Prediction

Max Pooling

Conv 1 × 1 Mid-level (Fm)

Low-level (Fl)

Multi-level Auxiliator

High-level (Fh)
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Scale Tree Diversity Enhancer
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x

Scale 1 Scale 2

Fusion

𝜶𝜶 𝟏𝟏 − 𝜶𝜶

Scale 3

Fusion
𝜷𝜷

𝟏𝟏 − 𝜷𝜷

Receptive Filed

DR 3
DR 2

DR 1

1× 1

3×3

5×5

7×7

9×9

11×11

13×13

15×15

17×17

Conv 1×1

𝑆𝑆1

𝑆𝑆2

𝑆𝑆3

𝑆𝑆4

𝑆𝑆5

𝑆𝑆6

𝑆𝑆7

𝑆𝑆8

𝑆𝑆9

DR 1

DR 2

DR 3

DR 3

DR 4

DR 5

DR 5

DR 6

DR 7

Cross-scale Communication 
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Visualize Scale Tree Diversity Enhancer
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Increase Kernel Size
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Generate 
density 
map

Split channels instead of concatenating additional ones
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Multi-level Auxiliator
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Raw image

Low-level Middle-level High-level

• Information from all 3 scales 
are useful for the auxiliary 
(background detection) task.

• Back propagating loss to low-
and middle-scales helps to 
train useful features.
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Ablation Studies

Regression
#3

• The impacts of Scale Tree 
Diversity Enhancer on 
ShanghaiTech Part A dataset.

• Multi-level Auxiliator ablation study on 
ShanghaiTech Part A.

• H.A, H.M.A and H.M.L.A indicates the 
auxiliator uses high-level only, high and 
middle-level only, and all three levels, 
respectively.

• BT stands for binarization threshold.

• Impacts of training with pure 
background images on ShanghaiTech 
Part A, Part B and UCF-QNRF datasets.
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• Many common issues limit the performance of CNNs:
• Vanishing gradient problem:

• Hard to train networks that are too deep.
• Superfluous feature reuse:

• Makes the network too wide without much benefit.
• Overfitting:

• Require stochastic regularizations.
• Scale variation within or between images:

• Need to capture features at different scales.
• Background noise:

• Be aware of foreground/background is important for scene understanding.

Summary
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• Perform stochastic regularizations 
along different dimensions:

• SFR randomly selects layers to feed into 
dense connections.

• Scale-Shake Unit randomly blends two 
branches each time.

• SiT randomly fuses different convolution 
groups for different scales.

• Reduce model size:
• ADNet aggregates different layers together 

(instead of concatenation) through layer-
attention.

• SiT fuses features from different scales 
together through a stochastic mixer.

• STNet splits channels instead of adding 
additional channels.

• Model fine-grain scale variations:
• ScSiNet uses SiT to capture intra-layer 

scale variation.
• STNet designs scale-tree to encode 

different scales in different channels.

• Carefully design auxiliary tasks:
• Auxiliary task in SMANet directly predicts 

total crowd count.
• Auxiliary task in STNet uses intermediate 

features to predict background confidence 
scores.

• Augment training data:
• ScSiNet randomly crops patches online.
• STNet adds pure background to balance 

foreground/background distribution.
Summary
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• Convolutional Neural Networks (CNNs) have demonstrated superior performances in many Computer Vision 
tasks, thanks to their strong learning capabilities. Hence, further enhancing CNNs’ learning capability has very 
broad impacts. This talk introduces several enhancement attempts through mechanisms such as stochastic 
regularizations, layer-wise attention, multi-scale aggregation, and auxiliary tasks. Since there are essentially 
two types of learning problems, classification and regression, two fundamental vision tasks are chosen 
accordingly as targe applications.

• We start with the image classification problem since it has been the gold standard for evaluating different CNN 
architectures.  Inspired by the success of feature reuse in DenseNet and a series of drop-based stochastic 
regularizations, Stochastic Features Reuse is presented to strengthen capacity and generalization of DenseNet 
through randomly dropping reused features.  Simultaneously, a Multi-scale Convolution Aggregation module is 
also explored to facilitate learning scale-invariant representations.  Albeit promising, the above approach 
inherits DenseNet’s limitations on large model size and superfluous feature reuse.  To achieve high 
discriminative power with compact models, layer-wise attention is designed to form a powerful variant, named 
Adaptively Dense CNN.

• We then turn to the crowd counting problem since it expects a single, non-constrained value as output, making 
it more arduous and representative than other regression tasks.  Appling the ideas of stochastic regularizations 
and multi-scale aggregation again, a Stochastic Multi-Scale Aggregation Network is designed to enlarge the 
scale diversity of feature maps and to combat overfitting.  To further boost the capacity of handling large scale 
variation, a Single-column Scale-invariant Network is presented, which extracts scale-invariant features though 
both interlayer multi-scale integration and a novel intralayer Scale-invariant Transformation.  Finally, an 
innovative Scale Tree Network is presented to parse scale information hierarchically and efficiently using a tree 
structure.  It also employs a Multi-level Auxiliator to facilitate the recognition of cluttered backgrounds.

• Extensive experiments on widely used benchmarks demonstrate the effectiveness of the proposed strategies in 
enhancing learning capabilities, thereby achieving superior performances in classification and counting 
accuracy.  Ablation studies and visualization analysis are also performed to better understand the impacts and 
behaviors of individual components.
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