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 Modeling Flowers from Images

— Reconstructing 3D flower petal shapes from a
single image is difficult

— Embedding priori knowledge into the 3D
reconstruction process helps

* Labeling 3D Shapes using Images

— Existing shape retrieval approaches do not give
us examples with similar topology

— Customized approach can better utilize available
training data

Two Recent Projects
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Modeling Flowers from Images
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* Flowers are ubiquitous
but not easy to model
— Complex structures
— Complex geometries

Flower Modeling
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* Automatic modeling w/
botanical knowledge

— Floral diagram &
inflorescence

— May not look real -
[ljiri et al. 2005 ]

* Interactive modeling
w/ traditional interface

— Only limited primitive
shapes can be used
— Tedious work

— Requires expertise [ljiri et al. 2006 ]

Existing Modeling Techniques
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e Modelers often refer to
photos when modeling

— Photos remain the
cheap and easy means
to capture the reality

— Multiple photos of the
same flower are not
always available

— Users have to estimate
shape in a “modeling-
and-checking” fashion

Modeling from Images
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Allows users to directly interact with input photo I
to reconstruct the 3D flower shape ‘

Input User Interaction

Motivations
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* Petals from a single
flower usually share a
similar shape

* They repeat around the
flower central axis,
roughly forming a
surface of revolution

* Their observed shapes
in 2D images vary, due

to differences in
projecting directions

Key Observations
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(a) (b) (c) (d) (e) (e)
pre- cone fitting surface fitting joint fitting individual texture
processing fitting mapping

Algorithm Pipeline
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(a)
pre-
processing

Preprocessing
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Flower center Intersection Point

Input 1

Particle Flow

Petal Tips Petals

Locate Center & Segment Petals
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(b)
cone fitting

Flower Orientation Estimation
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* A flower can be roughly represented by a parallel projection
cone

* Input can be seen as the projection of a

cone, under the parallel projection
assumption

Cone Fitting
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(c)

surface fitting

Flower Underlying Surface Fitting
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Generate petal
contour template

>
- Black —
Color — projections
observed — of the
contour in contour
the photo template

Fit a Surface of Revolution
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Surface Fitting Demo

Thursday, June 4, 2015 CRV 2015 Symposia Talk 16



(d)
joint fitting individual
fitting

Petal Deformation
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Move boundary
vertices along
their normal

Individual

Joint fitting fitting

Petal Fitting: Joint and Individual
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* Occlusion handling

* Flower of multiple layers

Extension of the Pipeline
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|nput Result

Occluded ~y & External

= =

Occlusion Handling
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Input Result

Petal Tips Grouping Segmentation Modeling

Multiple-Layer Flower

Thursday, June 4, 2015 CRV 2015 Symposia Talk 21



Thursday, June 4, 2015 CRV 2015 Symposia Talk 22



More Results
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e Cannot capture geometric
details on the petal surface

* Input photo cannot be
taken:

— from a highly oblique view
direction

— directly above the flower
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Labeling 3D Shapes using Images
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 Segmentation is one of
the most fundamental
tasks in shape analysis

* Low-level cues
(minimal rule;
convexity) alone are
insufficient

Segmentation of 3D Shapes
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Learning segmentation Unsupervised co-analysis

[Kalograkis et al. 10] [Sidi et al. 2011]
Joint segmentation Active co-analysis
[Huang et al. 2011] [Wang et al. 2012]

Existing Knowledge-driven Approaches
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* How many 3D models of strollers, golf carts,
gazebos, ...?

* Not enough 3D models = insufficient knowledge
e Labeling 3D shapes is also a non-trivial task

380 labeled
meshes over
19 object
categories

3D Data Challenge: Amount
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Self-intersecting; Incomplete
non-manifold

Real-world 3D models (e.g., those from Tremble Warehouse)
are often imperfect

3D Data Challenge: Quality
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About 14 million images across almost 22,000 object categories
Labeling images is quite a bit easier than labeling 3D shapes

Many More Images Available
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* Treat a 3D shape as a set of projected binary images

— Label these projections by learning from vast amount of
image data

 Then propagate the labels to the 3D shape
— Allow us to analyze imperfect 3D shapes
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(c) (e)
project input image retrieval back Graph cuts
shape & label transfer projection optimization

Algorithm Pipeline
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project input
shape

Project Input Shape
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 Assume objects are
upright oriented
— Most objects are!

* Project an input 3D
shape from multiple
pre-set viewpoints

Generate 2D Projections for the Input
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(b)

image retrieval
& label transfer

Label the Projections
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* For each projection,
retrieve top matches
from the set of labelled
images

* A novel 2D shape
retrieval approach is
proposed

— Look for shapes with
similar topology but
ignore differences in
part scales

Retrieve Labeled Images
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* Split image into
horizontal slabs

— Optimal corresponding
slabs are found using a
dynamic time warping
(DTW) algorithm

— Dissimilarity between 2
images is the sum of
dissimilarities of
corresponding slabs

* Effectively warp images
before compare

Image Comparison by Slab Matching
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* The top matching labeled images are used to
transfer labels to the projection
— Images are warped vertically to align with projection
— Label transfer is done per corresponding horizontal slabs

Label Transfer
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back
projection

Back Projection
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e Compute a label
probabilistic map over
the input 3D model:

— Each 3D primitive covers
multiple pixels in
multiple projections

— Each projection has

multiple retrieved
images

— Per-pixel labels and
confidences are
gathered & integrated

Back Project Labels to 3D Surface
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(e)
Graph cuts

optimization

Graph Cuts Optimization
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* Use multi-label alpha expansion graph cuts
algorithm

— Data term is based on the probabilistic map
* Each primitive shall be assigned to the label with
highest probability
— Smoothness term is based on the connectivity
and proximity among the primitives

* Adjacent and connected primitives shall have the
same label

Labeling with Graph Cuts
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* 11 object categories:
— About 2600 labeled images in total

— 3D shapes tested have self-intersections, as well as other
data artifacts

Results: Real Image Training Dataset
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P

Pavilion
(465 pieces)

Bicycle
(704 pieces)

Complex Topology
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Incomplete Model: Point Clouds
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 Comparison with data-driven mesh segmentation
— Models are manifold, complete, & no self-intersections
— Training images are projections of labeled 3D models
— Same inputs, training data, & experimental settings

I

Quantitative Evaluation

Thursday, June 4, 2015 CRV 2015 Symposia Talk 46



* Inherent from projective analysis:
— Do not fully capture 3D info

* Inherent to data-driven approaches:
— Knowledge has to be in data

* Upright assumption:
— Not designed for articulated shapes
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 Animage worth a thousand words. From images, we humans are able to
infer the 3D shape of an object and to decompose the object into
semantically meaningful parts. Now, is it possible to teach computers to
do these tasks?

* Two recent research projects that work along this direction will be
presented in this talk. The first one investigates how the 3D modeling of
flower head can be facilitated using a single photo of the flower. The
core idea is that flower head typically consists of petals of similar 3D
geometries, yet their observed shapes on 2D images vary due to
differences in projecting directions. Exploiting this variation allows us to
reconstruct the 3D geometry of the petals from a single image.

* The second project studies how to segment 3D models into semantically
meaningful parts based on knowledge learned from labeled 2D images.
Here the input 3D model is treated as a collection of 2D projections,
which are labeled using training images of similar objects. The 3D model
is then segmented by summarizing the labeling for its projections. Here
the key is, for each query projection, how to retrieve objects with similar
semantic parts and transfer their labels over.
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Related Publications
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