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Three Research Projects

• Capture transparent object appearance
– Use environmental matting & reduce # of images 

needed through compressive sensing

• Reconstruct transparent surface shape
– Measure how the light refracted & optimize 3D 

surface positions & normal

• Reconstruct full transparent object model
– Consolidate a point set surface to optimize light 

refraction, silhouette, & smoothness constraints
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Capture Transparent Object 
Appearance

Part I
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Extract Objects from Images

• How to extract an 
object then insert it to 
a new scene?
– Often referred as object 

cutout
– Simply using binary 

mask introduce aliasing 
artifacts

– Image matting is used to 
extract the transparent 
parts & fuzzy object 
boundaries
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Image Matting Formulation

•
– : the observed 

intensity of an pixel
– : the percentage of 

the pixel covered by the 
foreground

– : foreground color
– : background color

• Assume that light does 
not change directions

5Thursday, November 15, 2018 Faculty of CS, Dalhousie Univ.



Transparent Objects

• Do not have their own 
colors but acquire their 
appearances from the 
environments
– Reflect, refract, & 

scatter environment 
light

• Require environment 
matting (EM)
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Environment Matting Formulation

•
– : ambient illumination
– : light attenuation 

index
– : background 

image vector
– : light 

transport vector
• Describes the amount of 

contribution from 
background

• ଵ ௜

• Under a solid black 
backdrop:
–

–

• Under a solid white 
backdrop:
– ,
– ,
–
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Environment Matting (Cont’d)

• The major task of EM is 
to recover the light 
transport vector 
– Many-to-one 

decomposition
– Need to photograph the 

object in front of a 
series of predesigned 
backdrops
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Frequency-based EM Approach

• Proposed by Zhu & 
Yang in PG 2004
– Let each background 

pixel emit an unique 
frequency signal

– Find the accurate 
contributing sources by 
analyze the frequency 
of observed pixel

• Each background pixel 
emit an unique 
frequency signal
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Data Capture in Frequency-based EM

• Number of images 
needs to be captured 
depends on the 
resolution of the 
backdrop
– In theory, images 

are needed for backdrop 
with pixels

– Over a million of images 
for backdrop with 1K 
resolution

• Assume is the 
element-wise product 
of a row vector & a 
column vector
– Display row-based 

patterns then column-
based patterns

– Use row/column 
number to determine 
contribution source

– Number of images 
needed drops to 
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Compressive Sensing

• A framework for reconstructing sparse signals
– A -dimensional signal is called an -sparse 

signal if contains at most nonzero 
elements

• Uses linear measurements for 
reconstruction
– can be stably recovered by solving the 

following problem:
•

• with only measurements
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Our Approach

• Introduce CS to frequency-based EM:
– A foreground pixel is contributed by only a sparse 

number of background pixels
– The DFT of the recorded signal of an object pixel 

contains only a small number of frequencies

• Augment with phase information to 
distinguish signal with the same frequency
– Further reduce the measurement cost
– Accelerate the signal reconstruction process in CS
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Reconstruction via CS

• Given the recorded 
signal & the 
computed ambient 
illumination :
–

• : the inverse of the 
discrete Fourier 

transform matrix
• : an -dimensional 

sparse complex vector 
representing the 
frequency information

• Randomly generate a 
-dim permutation 

from & 
display frequency 
patterns with frame ids 
from 
– s.t.

–
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Augment with Phase Information

• Use both frequency & 
phase to encode source 
location
–

• ௣: per-designed phase 
value for the th region

•

• Reduce the maximal 
frequency from to 
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Augment with Phase Information (Cont’d)

• Both frequency search & phase search are 
now needed to determine the contributing 
sources
– By displaying row-based patterns with phase 

info, we use CS to obtain the contributing 
frequencies

– For a contributing frequency, we compute its 
phase value to locate the region from which the 
frequency originates
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Experiments

• Settings:
– Backdrop resolution: 
– minimization: dynamic group sparsity (DGS)

• Implemented in MATLAB R2014b
– The matte extraction at each pixel is independent 

& are performed in parallel

• Run on an 8-core PC with 3.4GHz Intel Core i7 
CPU & 24GB RAM
– Processing time varies between 10~100 minutes
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Measurement Cost

• The efficiency of CS is usually quantified 
using measurement cost:
– The ratio between the number of measurements 

& the number of unknowns
• Need to compute & , a total of 

unknowns
• If the number of images captured is , then the 

measurement cost is 

– The original frequency-based method has a 
measurement cost of 2
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Quantitative Evaluation on Synthetic Object

• Use POV-Ray tracing library to simulate the data 
acquisition
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Real Transparent Objects
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Dispersion Effect
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Summary

• Contributions:
– Accurately locate the 

contributing sources
– Apply CS to reduce the 

data acquisition cost
– Augment phase 

information to further 
cut acquisition cost & 
processing time

• Limitations:
– Assume can be 

decomposed into the 
element-wise product of 
a row vector & a column 
vector

– May lead to artifacts 
when a foreground pixel 
has two non-adjacent 
dominating contributing 
regions
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Reconstruct Transparent Surface 
Shape

Part II
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3D Reconstruction for Opaque Object

• Existing approaches for 
3D reconstruction:
– Stereo triangulation:

• Matching by intensity, 
followed by triangulation

– Structured light:
• Illuminate with light 

pattern, followed by 
triangulation

– Time-of-flight:
• Measure the time 

between light emission & 
observed reflection
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Transparent Objects

• The appearance is 
mostly determined by 
refraction
– The intensity is view 

dependent
– Stereo matching does 

not work

• Does not have strong 
light reflection
– Structured light & time-

of-flight do not work
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Refraction-based Triangulation

• Proposed by Wetzstein
et al. in ICCV 2011
– Use light field probes to 

acquire the 
correspondences 
between the incident & 
exit rays

– Assume object is thin & 
hence light is refracted 
only once

– Compute refraction 
positions through 
triangulation
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Our Approach

• Use two cameras & a 
monitor
– Perform EM at two 

monitor locations
– Measure where the 

incident way comes 
from for each observed 
(exit) ray

• Assume two refractions
– Can handle thick objects
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Ray-Ray Correspondences Acquisition

• Environment matting measures the location of the 
contribution source, no directional information

– Capturing the ray-ray correspondences 
requires performing EM twice
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Surface Ambiguities

• Thin surfaces
– Refraction location can be computed directly

• Thick surfaces
– The light path cannot be determined
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Position-Normal Consistency (PNC)

• Each 3D surface point can only have one 
unique normal
– A normal can be estimated from the 3D positions 

of neighboring points
• PCA normal

– Another normal can be computed for generating 
the observed light refraction effect
• Snell’s law normal

– The two normals shall be consistent at both front 
& back surfaces
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Enforce PNC at Both Refraction Locations

• Enforcing PNC at single refraction location does not 
provide enough constraints
– Capture ray-ray correspondences from both front & back 

of the object
– The normal measured from both sides shall be the same
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Objective Function

• Minimize a position-normal consistency term 
& a smoothness term for both front & back 
surfaces:

–

• : depth map of front surface
• : depth map of back surface
• : the set containing all the ray-ray correspondences
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The Two Terms

• For the ray-ray 
correspondence, the 
normal consistency 
term is measured as:
–

• : the PCA normal
• : the Snell’s law 

normal

• The smoothness term is 
defined as:
–

• : the depth map of 
refraction surface

• : the local 
neighborhood of pixel 

Thursday, November 15, 2018 Faculty of CS, Dalhousie Univ. 32



Experiments

• Implemented in MATLAB R2014b
– The PCA & Snell normal calculations for different 

pixels are independent & are computed in 
parallel

• Run on an 8-core PC with 3.4GHz Intel Core i7 
CPU & 24GB RAM
– Processing time varies between 1-2 hours
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Synthetic Object

• Use a ray-tracer to simulate the refraction 
effect of a sphere

• Three metrics for evaluation:
– Root mean square error (RMSE) of depths
– Average angular difference (AAD) between the 

true normal & PCA normal
– AAD between the true normal & Snell’s law 

normal
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Quantitative Evaluation
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Real Objects
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Real Object (Cont’d)
Thursday, November 15, 2018 Faculty of CS, Dalhousie Univ. 37



Summary

• Contributions:
– Simultaneous 3D 

position & normal 
estimation

– Refractive index 
estimation

• Limitations:
– The estimated Point 

cloud is incomplete
– Thousands of images 

need to be captured
– Assume homogeneous 

objects & two refraction 
events
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Reconstruct Full Transparent 
Object Model

Part III
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Intrusive Acquisition

• Paint then scan
• Fluorescent immersion

– Put object in fluorescent 
liquid & analyze the 
light rays that are visible 
due to fluorescence

• Dip transform 
– Dip object in liquid in 

different orientations & 
measure volume 
displacement
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Directly Merge Point Clouds from Part II
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Our Approach

• Start from initial model obtained by space carving
• Progressively recovers geometric details through 

optimizing light refraction, silhouette, & 
smoothness constraints
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Automatic Capturing Setup

• Object is placed on 
Turntable #1
– LCD monitor on 

Turntable #2 serves as 
light source

– Camera #1 captures 
silhouettes & ray-pixel 
correspondences

– Camera #2 looks at 
Turntable #1 for its 
rotation axis calibration
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Initial Rough Model

• Generate initial model:
– Gather the silhouettes 

of the object under 
different viewpoints

– Compute the space 
within the silhouettes 
by space carving
• [Kutulakos & Seitz 2000]

• The model is complete 
but inaccurate
– Does not capture 

concave areas well
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Point Cloud from Part II

• Generate point clouds
– Each set of front & back 

viewpoints is used to 
compute a point cloud

– Different sets merge 
into a point set surface

• The point set surface is 
incomplete & noisy
– No data on top/bottom
– Not well-aligned
– Better capture concave 

areas
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Point Consolidation

• Sample points on the complete model
• Project them toward the point set surface

–

– 1st term moves toward the point set surface
– 2nd term maintains smoothness & completeness
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Point Consolidation (Cont’d)
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Silhouette Consistency

• Point estimated from Part II are not accurate
– Can lead the projection away from silhouettes
– Enforcing consistency with silhouettes helps

–

– 1st term minimizes distance between surface 
projection & silhouettes

– 2nd term maintains smoothness
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Silhouette Consistency (Cont’d)
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Repeat until Converge
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Experiment on Synthetic Object
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Experiment on Real Object
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Experiment on More Real Objects
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Quantitative Evaluation
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Summary

• Contributions:
– An automatic setup for 

capturing ray-ray 
correspondences

– Adaptive surface 
projection for point 
consolidation

– Silhouette consistency

• Limitations:
– Thousands of images 

need to be captured
– Assume homogeneous 

objects & two refraction 
events
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Future Work
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Dynamic Transparent Surface

• How to reconstruct the 3D shape of time-
varying surfaces, such as water?
– Cannot capture multiple images with different 

backdrops at the same time
– Have to make estimation based on a single image
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Questions?



Abstract

• Modeling and rendering real objects are active topics in both computer vision 
and graphics. Many powerful techniques are available for capturing the 3D 
shapes and photorealistic appearances of opaque objects, but the ones for 
handling transparent objects are not as capable. The challenges are due to the 
facts that transparent objects do not have their own colors but acquire their 
appearances from the environments and that these objects interact with light in 
complex manners including reflection, refraction, and scattering.

• Three research projects that advance the state-of-the-art on this front are  
presented here. The first one investigates how transparent objects interact with 
the environments using a frequency-based environment matting approach. 
Unlike existing methods that require thousands of captured images and/or long 
processing time, our approach exploits compressive sensing theory to extract the 
matte effectively and efficiently. The second project develops a new refraction-
based algorithm for estimating 3D point positions on transparent object surfaces. 
By introducing a novel surface and refraction normal consistency constraint, an 
optimization procedure is designed to jointly reconstruct the 3D positions and 
normals of these points. Finally, the third project aims at reconstructing full 3D 
models for transparent objects. Starts from a rough but complete 3D model 
generated from space carving, our algorithm progressively optimizes the model 
under three constraints: surface and refraction normal consistency, surface 
projection and silhouette consistency, and surface smoothness.

Thursday, November 15, 2018 Faculty of CS, Dalhousie Univ. 60



Biography

• Dr. Minglun Gong is a Professor and Head at the Department of Computer 
Science, Memorial University of Newfoundland. He obtained his Ph.D. from the 
University of Alberta in 2003, his M.Sc. from the Tsinghua University in 1997, and 
his B.Engr. from the Harbin Engineering University in 1994. After graduation, he 
was a faculty member at the Laurentian University for four years before joined 
the Memorial University in 2007.

• Minglun’s research interests cover various topics in the broad area of visual 
computing (including computer graphics, computer vision, visualization, image 
processing, and pattern recognition). So far, he has published over 100 referred 
technical papers in journals and conference proceedings, including 19 articles in 
ACM/IEEE transactions. He is the inventor of an awarded patent and 6 pending 
patents. Currently an associate editor for Pattern Recognition, he has also served 
as program committee member for top-tier conferences (e.g. ICCV and CVPR) and 
reviewer for prestigious journals (e.g. IEEE TPAMI and ACM TOG). He was the 
recipient of the Izaak Walton Killam Memorial Award, the 2015 Best Paper Award 
from the Canadian Artificial Intelligence Association, and the 2016 Best Paper 
Award from the International Symposium on Visual Computing.

Thursday, November 15, 2018 Faculty of CS, Dalhousie Univ. 61


