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» Capture transparent object appearance

— Use environmental matting & reduce # of images
needed through compressive sensing

* Reconstruct transparent surface shape

— Measure how the light refracted & optimize 3D
surface positions & normal

* Reconstruct full transparent object model

— Consolidate a point set surface to optimize light
refraction, silhouette, & smoothness constraints

Three Research Projects
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Capture Transparent Object
Appearance
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* How to extract an
object then insert it to
a hew scene?

— Often referred as object
cutout

— Simply using binary
mask introduce aliasing
artifacts

— Image matting is used to
extract the transparent

parts & fuzzy object

boundaries

Extract Objects from Images
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e C=aF+(1—a)B

— (': the observed
intensity of an pixel

— o : the percentage of
the pixel covered by the
foreground

— F: foreground color
— B: background color

* Assume that light does
not change directions

Image Matting Formulation
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Do not have their own 608664
colors but acquire their
appearances from the
environments

— Reflect, refract, &
scatter environment
light

* Require environment
matting (EM)
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Transparent Objects
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e C=F+pWB

— F: ambient illumination

 Under a solid black

— p: light attenuation backdrop:
index — B =0,
— B: n? x 1 background —C=F
image vector * Under a solid white
— W: 1 X n? light backdrop:
transport vector _B=b,
contribation from - = [IWll; =1,

background —C=F+ pb
* W], =1,W; =0

Environment Matting Formulation
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* The major task of EM is
to recover the light
transport vector W

— Many-to-one
decomposition

— Need to photograph the
object in front of a
series of predesigned
backdrops

Environment Matting (Cont’d)

Thursday, November 15, 2018 Faculty of CS, Dalhousie Univ. 8



* Proposed by Zhu &
Yang in PG 2004

— Let each background
pixel emit an unique
frequency signal

— Find the accurate
contributing sources by
analyze the frequency
of observed pixel

Frequency-based EM Approach
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e Assume W is the
element-wise product
of a row vector & a
column vector

— Display row-based
patterns then column-
based patterns

* Number of images
needs to be captured
depends on the
resolution of the
backdrop

— In theory, 2 X n? images
are needed for backdrop

. . — Use row/column
with n X n pixels

number to determine

— Over a million of images contribution source

for backdrop with 1K
resolution

— Number of images
needed dropsto 4 X n

Data Capture in Frequency-based EM
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* A framework for reconstructing sparse signals

— A N-dimensional signal x is called an s-sparse
signal if x contains at most s << N nonzero
elements

* Uses M < N linear measurements y = Ax for
reconstruction

— x can be stably recovered by solving the
following problem:

 min||x||;, s.t.y = Ax

 withonly M = 0(5 X log(N/s)) measurements

Compressive Sensing
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* Introduce CS to frequency-based EM:

— A foreground pixel is contributed by only a sparse
number of background pixels

— The DFT of the recorded signal of an object pixel
contains only a small number of frequencies

 Augment with phase information to
distinguish signal with the same frequency

— Further reduce the measurement cost

— Accelerate the signal reconstruction process in CS

Our Approach
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* Given the recorded
signal C & the
computed ambient

illumination F:
— C—F =DX
e D:theinverse of the N X

N discrete Fourier
transform matrix

e X:an N-dimensional
sparse complex vector
representing the
frequency information

 Randomly generate a
M-dim permutation ()
from{0,1,---,N — 1} &
display frequency
patterns with frame ids
from ()

— min||X||{,s.t. C — F =
D(Q,:)X

— W(ind(r, c)) =
Wrow (I‘) Wcol (C)

Reconstruction via CS
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e Use both frequency &
phase to encode source
location

- B(f.t, ‘Pp) =
E(cos (anﬁ +

<pp) + 1)

* ¢p: per-designed phase
value for the pth region
s 1<p<k

e Reduce the maximal

frequency from n to %

n
1£f£EJ (P]_

n

Augment with Phase Information
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* Both frequency search & phase search are
now needed to determine the contributing
sources

— By displaying row-based patterns with phase
info, we use CS to obtain the contributing
frequencies

— For a contributing frequency, we compute its
phase value to locate the region from which the
frequency originates

Augment with Phase Information (Cont’d)
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* Settings:

— Backdrop resolution: n = 1024

— L1 minimization: dynamic group sparsity (DGS)
* Implemented in MATLAB R2014b

— The matte extraction at each pixel is independent
& are performed in paraliel

e Run on an 8-core PC with 3.4GHz Intel Core i7
CPU & 24GB RAM

— Processing time varies between 107100 minutes
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* The efficiency of CS is usually quantified
using measurement cost:

— The ratio between the number of measurements
& the number of unknowns

 Need to compute W,,, & W,.,;, a total of 2n
unknowns

* If the number of images captured is m, then the

.. m
measurement cost Is %

— The original frequency-based method has a
measurement cost of 2

Measurement Cost
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* Use POV-Ray tracing library to simulate the data
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Quantitative Evaluation on Synthetic Object
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Real Transparent Objects
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 Limitations:

 Contributions: — Assume W can be

— Accurately locate the decomposed into the
contributing sources element-wise product of

— Apply CS to reduce the a row vector & a column
data acquisition cost vector

— Augment phase — May lead to artifacts
information to further when a foreground pixel
cut acquisition cost & has two non-adjacent
processing time dominating contributing

regions
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Reconstruct Transparent Surface
Shape
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* Existing approaches for

3D reconstruction: 7
v
— Stereo triangulation: 0 ¢
* Matching by intensity, |/ s
followed by triangulation & J |
— Structured light: Laser scanner  Multi-view stereo

* [lluminate with light
pattern, followed by
triangulation

— Time-of-flight:

e Measure the time RGBD camera
between light emission &
observed reflection

3D Reconstruction for Opaque Object
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* The appearance is
mostly determined by
refraction

— The intensity is view
dependent

— Stereo matching does
not work

* Does not have strong
light reflection

— Structured light & time-
of-flight do not work

Transparent Objects
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* Proposed by Wetzstein
Et al. in ICCV 2011 transparency

— Use light field probes to
acquire the
correspondences _
between the incident &  tightbox lensictarray  refractive surface
exit rays

light field probe

._,\I

— Assume object is thin & A, '\
hence light is refracted o
only once

camecera

— Compute refraction
positions through
triangulation

Refraction-based Triangulation

Thursday, November 15, 2018 Faculty of CS, Dalhousie Univ. 25



e Use two cameras & a
monitor

— Perform EM at two
monitor locations

Cameréifg

— Measure where the
incident way comes
from for each observed
(exit) ray

 Assume two refractions
— Can handle thick objects

Our Approach
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* Environment matting measures the location of the
contribution source, no directional information

e

— Capturing the ray-ray correspondences (p, d'*)

>

(c, d°U!) requires performing EM twice

Pi

Camera

Monitor Positions

Ray-Ray Correspondences Acquisition
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 Thin surfaces

— Refraction location can be computed directly

* Thick surfaces
— The light path cannot be determined

Camera

....
» *
"y gpmpunn® I

Monitor Positions

Surface Ambiguities
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* Each 3D surface point can only have one
unique normal

— A normal can be estimated from the 3D positions
of neighboring points

e PCA normal

— Another normal can be computed for generating
the observed light refraction effect
* Snell’s law normal

— The two normals shall be consistent at both front
& back surfaces

Position-Normal Consistency (PNC)
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* Enforcing PNC at single refraction location does not
provide enough constraints

— Capture ray-ray correspondences from both front & back

of the object
— The normal measured from both sides shall be the same
\ Front Back I [
Surface Surface I

P

Camera 2

Cameral

! \ / ’

Monitor Positions Monitor Positions

Enforce PNC at Both Refraction Locations
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* Minimize a position-normal consistency term
& a smoothness term for both front & back
surfaces:

— g?anb (Zieﬂ Epnc(i) + A (Eso (Df) + Eg (Db)))
* Df: depth map of front surface
* D,: depth map of back surface

e (): the set containing all the ray-ray correspondences

Objective Function
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* For the it" ray-ray * The smoothness term is

correspondence, the defined as:
normal consistency — E. (D) =
term is measured as: YseD zz:tEN(g)(D (s) —
— Epnc(i) = 1- D(D))
|P(i) ) S(i)l * D :the depth map of
* P(i):the PCA normal refraction surface
* S(i): the Snell’s law * N(s): the local
normal neighborhood of pixel s
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* Implemented in MATLAB R2014b

— The PCA & Snell normal calculations for different
pixels are independent & are computed in
parallel

* Run on an 8-core PC with 3.4GHz Intel Core i7
CPU & 24GB RAM

— Processing time varies between 1-2 hours
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* Use a ray-tracer to simulate the refraction
effect of a sphere

* Three metrics for evaluation:
— Root mean square error (RMSE) of depths

— Average angular difference (AAD) between the
true normal & PCA normal

— AAD between the true normal & Snell’s law
normal

Synthetic Object
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Depth Error of Front Surface

0.027 =i

0.026 mer =y
w 0.025 g )=1.55
{.é'j 0.024 e —
o 0.023

0.022

0.021 L

0.02 -

01 2 3
Standard Deviation o

4 5 6 7 8 9 10

PCA Normal Error of Front Surface

w114

amgen 2=1,55

il =17

0 i 2 3 4 5 & 7 8 & 10
Standard Deviation o

Snell's Normal Error of Front Surface

AAD
Lo I e o N R ~ T ¥ R = b TR Y = =}

0 1 2 3 4 5 6 7 8 9 10
Standard Deviation o

Quantitative Evaluation
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(a) Point cloud of the “ornament™ object
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Real Objects

Thursday, November 15, 2018 Faculty of CS, Dalhousie Univ. 36




480 485 400 405 500 BSOS 51D

510 =
s | 500
il 490 -
55_'"1_‘1"1—* olliah v eE 480 — 1 T T
95 g 25 20 15 -0 S

-30-20-10

(a) Point cloud of the “bird” object

(e)

(b)

Real Object (Cont’d)
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 Limitations:

* Contributions: — The estimated Point
— Simultaneous 3D cloud is incomplete
position & normal — Thousands of images
estimation need to be captured
— Refractive index — Assume homogeneous
estimation objects & two refraction
events
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Part Ili
Reconstruct Full Transparent
Object Model
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 Paint then scan

* Fluorescent immersion

— Put object in fluorescent
liquid & analyze the
light rays that are visible
due to fluorescence

* Dip transform
— Dip object in liquid in
different orientations &

measure volume
displacement

Intrusive Acquisition
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Directly Merge Point Clouds from Part Il
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e Start from initial model obtained by space carving

* Progressively recovers geometric details through
optimizing light refraction, silhouette, &
smoothness constraints

Initial Model Normal consistency
(Shape-from-silhouette) _7 (Part Il)

Surface projection

/.
e,
)
% .
S Silhouette
() q
consistency
Poisson

) Result
reconstruction

Our Approach
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* Objectis placed on
Turntable #1

— LCD monitor on
Turntable #2 serves as
light source

— Camera #1 captures
silhouettes & ray-pixel
correspondences

— Camera #2 looks at
Turntable #1 for its
rotation axis calibration

Automatic Capturing Setup
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e Generate initial model:

— Gather the silhouettes
of the object under
different viewpoints

— Compute the space
within the silhouettes
by space carving

e [Kutulakos & Seitz 2000]

” .\'.‘.,'. ", _,' .
- ' TN N -
(BTN, 0o
I 07 »

WA Sy e X6

* The model is complete
but inaccurate

— Does not capture
concave areas well

Initial Rough Model
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* Generate point clouds

— Each set of front & back
viewpoints is used to
compute a point cloud

— Different sets merge
into a point set surface

* The point set surface is
incomplete & noisy
— No data on top/bottom
— Not well-aligned

— Better capture concave
dareas

Point Cloud from Part Il
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 Sample points on the complete model
* Project them toward the point set surface

[ Jes-m]
2
S| Biellf = pifle ¢

2
\"'%ﬂ j'eJ\/‘j”Aj_Aj’” /

— 15t term moves toward the point set surface

— 2"d term maintains smoothness & completeness

Point Consolidation
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Point set
surface

Point Consolidation (Con
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* Point estimated from Part Il are not accurate
— Can lead the projection away from silhouettes
— Enforcing consistency with silhouettes helps

— 15 term minimizes distance between surface
projection & silhouettes

— 2" term maintains smoothness

Silhouette Consistency
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L Without With
Iteration silhouette silhouette
constraints constraints

Silhouette Consistency (Cont’d)
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:

,

Initial rﬁgdel 20t (sid-e view) 20t (frc;rﬁ view)
Iteration >
Ground truth  0.0802 0.0578 0.0488 0.0362 0.0337

Repeat until Converge
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Experiment on Synthetic Object
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Experiment on Real Object
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Real image Rendered image Reconstruction Real image Rendered image Reconstruction

Experiment on More Real Objects
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Average Reconstruction Error (mm)
s £ e 5
o § = &

5 10 15 20 25
Iteration

(e)

Quantitative Evaluation
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* Contributions:
— An automatic setup for  * Limitations:

capturing ray-ray — Thousands of images
correspondences need to be captured

— Adaptive surface — Assume homogeneous
projection for point objects & two refraction
consolidation events

— Silhouette consistency
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* How to reconstruct the 3D shape of time-
varying surfaces, such as water?

— Cannot capture multiple images with different
backdrops at the same time

— Have to make estimation based on a single image

Dynamic Transparent Surface
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* Yiming Qian, Minglun Gong, & Yee-Hong Yang:
Frequency-based environment matting by
compressive sensing. ICCV, December 2015.

* Yiming Qian, Minglun Gong, & Yee-Hong Yang:
3D reconstruction of transparent objects with
position-normal consistency. CVPR, June 2016.

* Bojian Wu, Yang Zhou, Yiming Qian, Minglun
Gong, & Hui Huang: Full 3D reconstruction of
transparent objects. Siggraph, August 2018.

Related Publications

Thursday, November 15, 2018 Faculty of CS, Dalhousie Univ. 58



y, November 15, 2018

Th cm\L &

Questions? -



 Modeling and rendering real objects are active topics in both computer vision
and graphics. Many powerful techniques are available for capturing the 3D
shapes and photorealistic appearances of opaque objects, but the ones for
handling transparent objects are not as capable. The challenges are due to the
facts that transparent objects do not have their own colors but acquire their
appearances from the environments and that these objects interact with light in
complex manners including reflection, refraction, and scattering.

* Three research projects that advance the state-of-the-art on this front are
presented here. The first one investigates how transparent objects interact with
the environments using a frequency-based environment matting approach.
Unlike existing methods that require thousands of captured images and/or long
processing time, our approach exploits compressive sensing theory to extract the
matte effectively and efficiently. The second project develops a new refraction-
based algorithm for estimating 3D point positions on transparent object surfaces.
By introducing a novel surface and refraction normal consistency constraint, an
optimization procedure is designed to jointly reconstruct the 3D positions and
normals of these points. Finally, the third project aims at reconstructing full 3D
models for transparent objects. Starts from a rough but complete 3D model
generated from space carving, our algorithm progressively optimizes the model
under three constraints: surface and refraction normal consistency, surface
projection and silhouette consistency, and surface smoothness.
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