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* Capture transparent object appearance
— Using frequency-based environmental matting

— Reduce number of input images needed through
compressive sensing

* Reconstruct transparent surface shape

— Measure how the light travels from the source to
the camera

— Jointly optimize the 3D positions and normals of
the refractive surface using a novel position-
normal consistency constraint

Two Recent Projects
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Capture Transparent Object
Appearance
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* How to extract an
object then insert it to
a hew scene?

— Often referred as object
cutout

— Simply using binary
mask introduce aliasing
artifacts

— Image matting is used to
extract the transparent

parts and fuzzy object

boundaries
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Extraction of Opaque Objects
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e C=0F+(1—a)B
— (': the observed
intensity of an pixel

— o : the percentage of
the pixel covered by the
foreground

— F: foreground color
— B: background color

* Assume that light does
not change directions
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Image Matting Formulation
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Do not have their own
colors but acquire their
appearances from the
environments

— Reflect, refract, and
scatter environment
light

* Require environment
matting (EM)
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Transparent Objects
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c C=F+pWB

— F: ambient illumination

 Under a solid black

— p: light attenuation backdrop:
index — B=0,
— B: n? x 1 background - C=F
image vector * Under a solid white
— W: 1 X n? light backdrop:
transport vector _B=b,
contribation from = IWll; =1,

background —C=F+ pb
* [W]l; =1,W; =0

Environment Matting Formulation
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* The major task of EM is
to recover the light
transport vector W

— Many-to-one
decomposition

— Need to photograph the
object in front of a
series of predesigned
backdrops

Environment Matting (Cont’d)
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* Proposed by Zhu and
Yang in PG 2004

— Let each background
pixel emit an unique
frequency signal

— Find the accurate
contributing sources by
analyze the frequency
of observed pixel

Frequency-based EM Approach
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* Number of images
needs to be captured
depends on the
resolution of the
backdrop

— In theory, 2 X n? images
are needed for backdrop
with n X n pixels

— Over a million of images
for backdrop with 1K
resolution

e Assume W is the
element-wise product
of a row vector and a
column vector

— Display row-based
patterns then column-
based patterns

— Use row/column
number to determine
contribution source

— Number of images
needed dropsto 4 X n

Data Capture in Frequency-based EM
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* A framework for reconstructing sparse signals

— A N-dimensional signal x is called an s-sparse
signal if x contains at most s << N nonzero
elements

* Uses M < N linear measurements y = Ax for
reconstruction

— x can be stably recovered by solving the
following problem:

 min||x||;, s.t.y =Ax

e withonly M = 0(5 X log(N/S)) measurements

Compressive Sensing
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* Introduce CS to frequency-based EM:

— A foreground pixel is contributed by only a sparse
number of background pixels

— The DFT of the recorded signal of an object pixel
contains only a small number of frequencies

 Augment with phase information to
distinguish signal with the same frequency

— Further reduce the measurement cost

— Accelerate the signal reconstruction process in CS

Our Approach
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* Given the recorded « Randomly generate a

signal C and the M-dim permutation
computed ambient from {0,1,---,N — 1}
illumination F: and display frequency
- (—-F=DX patterns with frame ids
* D:theinverse of the from Q
N X N discrete Fourier _
transform matrix — min||X||;,st.C — F =
* X:an N-dimensional D(Q; 1 )X
sparse complex vector _ W(ind(‘r C)) _
representing the _ __
frequency information Wrow (r)WCOI (C)

Reconstruction via CS
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* Use both frequency
and phase to encode

source location 1<f<s o1
_B(f’t’(pp): » <n,
5((:05 (2nf%+<pp)+ 1) fsp o

* @p: per-designed phase
value for the pth region
c 1<p<k

* Reduce the maximal L<fsp o
n
frequency from n to P,

Augment with Phase Information
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* Both frequency search and phase search are
now needed to determine the contributing
sources

— By displaying row-based patterns with phase
info, we use CS to obtain the contributing
frequencies

— For a contributing frequency, we compute its
phase value to locate the region from which the
frequency originates

Augment with Phase Information (Cont’d)
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* Settings:

— Backdrop resolution: n = 1024

— L1 minimization: dynamic group sparsity (DGS)
* Implemented in MATLAB R2014b

— The matte extraction at each pixel is independent
and are performed in parallel

* Run on an 8-core PC with 3.4GHz Intel Core i7
CPU and 24GB RAM

— Processing time varies between 107100 minutes
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* The efficiency of CS is usually quantified
using measurement cost:

— The ratio between the number of measurements
and the number of unknowns

 Need to compute W, ,, and W,,;, a total of 2n
unknowns

* |f the number of images captured is m, then the

.. m
measurement cost Is %

— The original frequency-based method has a
measurement cost of 2

Measurement Cost
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* Use POV-Ray tracing library to simulate the data
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Quantitative Evaluation on Synthetic Object
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Real Transparent Objects
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(a) Photograph (b) Composite

Dispersion Effect
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 Limitations:

* Contributions: — Assume W can be

— Accurately locate the decomposed into the
contributing sources element-wise product of

— Apply CS to reduce the a row vector and a
data acquisition cost column vector

— Augment phase — May lead to artifacts
information to further when a foreground pixel
cut acquisition cost and has two non-adjacent
processing time dominating contributing

regions
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Reconstruct Transparent Surface
Shape
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* Humans rely on stereo matching to extract 3D
information

— The disparity between the corresponding pixels indicates
the depth of the object

3D Reconstruction for Opaque Object
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* Pipeline:
— Matching by intensity, followed by triangulation
* Assumptions:

— Each surface point has a unique color/pattern
— Surface color is the same under different view directions

Reconstruction for Opaque Object (Cont’d)

Friday, September 2, 2016 Shenzhen University 2016 24



* The appearance of
transparent object is
mostly determined by
refraction

* The intensity is view
dependent

Transparent Objects
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* Proposed by Wetzstein
et al. in ICCV 2011

— Use light field probes to
acquire the
correspondences
between the incident
and exit rays

— Assume object is thin
and hence light is
refracted only once

— Compute refraction
positions through
triangulation

light field probe

light box lenslet array

transparency
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refractive surface
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camera

Refraction-based Triangulation
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e Use two cameras and a
monitor

— Perform EM at two
monitor locations

Camera 2

— Measure where the

incident way comes Object
from for each observed , i
. :
(exit) ray /R

 Assume two refractions
— Can handle thick objects

Our Approach
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* Environment matting measures the location of the
contribution source, no directional information

— Capturing the ray-ray correspondences (p, dT{) =

_—

(c, d°U¥!) requires performing EM twice

Pi

Camera

Monitor Positions

Ray-Ray Correspondences Acquisition
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 Thin surfaces

— Refraction location can be computed directly

* Thick surfaces
— The light path cannot be determined

Camera

...
t,
../.llIl" 1

Monitor Positions

Surface Ambiguities
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* Each 3D surface point can only have one
unigue normal

— A normal can be estimated from the 3D positions
of neighboring points

e PCA normal

— Another normal can be computed for generating
the observed light refraction effect
* Snell’s law normal

— The two normals shall be consistent at both front
and back surfaces

Position-Normal Consistency (PNC)
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* Enforcing PNC at single refraction location does not
provide enough constraints

— Capture ray-ray correspondences from both front and
back of the object

— The normal measured from both sides shall be the same

Front Back I ]
Surface Surface I

B

Camera 2

Cameral

1 \ J :

Monitor Positions Monitor Positions

Enforce PNC at Both Refraction Locations
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 Minimize a position-normal consistency term
and a smoothness term for both front and
back surfaces:

— g?,ipr;(ziEQ Epnc(l) + A(ESO (Df) + Ego (Db)))

* Df: depth map of front surface
* D,: depth map of back surface

e (): the set containing all the ray-ray correspondences

Objective Function
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* For the i'" ray-ray
correspondence, the
normal consistency

e The smoothness term is
defined as:

term is measured as: Eso(D) = )
. Epnc(i) —1— D.s€D ZtEN(S)(D (s) — D(t))
|P(i) . S(i)| * D :the depth map of
_ refraction surface
* P(i):the PCA normal « V' (s): the local
« S(i): ﬂ;e Snell’s law neighborhood of pixel s
norma
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* Implemented in MATLAB R2014b

— The PCA and Snell normal calculations for
different pixels are independent and are
computed in parallel

e Run on an 8-core PC with 3.4GHz Intel Core i7
CPU and 24GB RAM

— Processing time varies between 1-2 hours
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* Use a ray-tracer to simulate the refraction
effect of a sphere

* Three metrics for evaluation:
— Root mean square error (RMSE) of depths

— Average angular difference (AAD) between the
true normal and PCA normal

— AAD between the true normal and Snell’s law
normal

Synthetic Object
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Quantitative Evaluation

Friday, September 2, 2016

Shenzhen University 2016

36



(b) Depth maps of the “ornament™ object

n

[~

(c) Point cloud of the “ball” object (d) Depth maps of the “ball” object

Real Objects
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(a) Point cloud of the “bird™ object

Real Object (Cont’d)
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* Contributions:
— Simultaneous 3D position and normal estimation
— Refractive index estimation

* Limitations:
— Thousands of images need to be captured

— Assume homogeneous objects and two
refraction events
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* Can we fully capture the appearance of a
transparent object and insert it into 3D
virtual environment?

— How to capture ray-ray correspondences when
there are multiple contribution sources?

— How to capture object from all sides?
— Spatial coherences among contribution sources
— Caustic effect?

Image-Based Transparent Object
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* How to reconstruct the 3D shape of time-
varying surfaces, such as water?

— Cannot capture multiple images with different
backdrops at the same time

— Have to make estimation based on a single image

Dynamic Transparent Surface
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* Yiming Qian, Minglun Gong, & Yee-Hong Yang:
3D reconstruction of transparent objects with
position-normal consistency. IEEE Conference on
Computer Vision and Pattern Recognition. Las
Vegas, NV, USA, June 27-30, 2016.

* Yiming Qian, Minglun Gong, & Yee-Hong Yang:
Frequency-based environment matting by
compressive sensing. IEEE International
Conference on Computer Vision: 3532-3540.
Santiago, Chile, December 13-16, 2015.

Related Publications
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* Modeling and rendering real objects are active topics in both computer
vision and graphics. Many powerful techniques are available for
capturing the 3D shapes and photorealistic appearances of opaque
objects, but the ones for handling transparent objects are not as
advanced. The challenges are due to the facts that transparent objects
do not have their own colors but acquire their appearances from the
environments and that these objects interact with light in complex
manners including reflection, refraction, and scattering.

 Two recent research projects that advance the state-of-the-art on this
front is presented here. The first one investigates how transparent
objects interact with the environments using a frequency-based
environment matting approach. However, unlike existing approaches
that require thousands of captured images and/or long processing time,
our approach exploits compressive sensing theory to extract the matte
effectively and efficiently. The second project develops a new refraction-
based approach for reconstructing homogeneous transparent objects. By
introducing a novel position-normal consistency constraint, an
optimization procedure is designed to jointly reconstruct the 3D
positions and normals of transparent surfaces.
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